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Multiple Hypothesis Testing

In hypothesis testing, statistical significance is typically based on calculations involving p-values
and Type I error rates. A p-value calculated from a single statistical hypothesis test can be used
to determine whether there is statistically significant evidence against the null hypothesis. The
upper threshold applied to the p-value in making this determination (often 5% in the scientific
literature) determines the Type I error rate; i.e., the probability of making a Type I error when
the null hypothesis is true. Multiple hypothesis testing is concerned with testing several statistical
hypotheses simultaneously. Defining statistical significance is a more complex problem in this
setting.

A longstanding definition of statistical significance for multiple hypothesis tests involves the
probability of making one or more Type I errors among the family of hypothesis tests, called
the family-wise error rate. However, there exist other well established formulations of statistical
significance for multiple hypothesis tests. The Bayesian framework for classification naturally
allows one to calculate the probability that each null hypothesis is true given the observed data
(Efron et al. 2001, Storey 2003), and several frequentist definitions of multiple hypothesis testing
significance are also well established (Shaffer 1995).

Soric (1989) proposed a framework for quantifying the statistical significance of multiple hy-
pothesis tests based on the proportion of Type I errors among all hypothesis tests called statistically
significant. He called statistically significant hypothesis tests discoveries and proposed that one be
concerned about the rate of false discoveries' when testing multiple hypotheses. This false discov-
ery rate is robust to the false positive paradox and is particularly useful in exploratory analyses,
where one is more concerned with having mostly true findings among a set of statistically significant
discoveries rather than guarding against one or more false positives. Benjamini & Hochberg (1995)
provided the first implementation of false discovery rates with known operating characteristics.
The idea of quantifying the rate of false discoveries is directly related to several pre-existing ideas,

such as Bayesian misclassification rates and the positive predictive value (Storey 2003).

YA false discovery, Type I error, and false positive are all equivalent. Whereas the false positive rate and Type I

error rate are equal, the false discovery rate is an entirely different quantity.



Applications

In recent years, there has been a substantial increase in the size of data sets collected in a number of
scientific fields, including genomics, astrophysics, brain imaging, and spatial epidemiology. This has
been due in part to an increase in computational abilities and the invention of various technologies,
such as high-throughput biological devices. The analysis of high-dimensional data sets often involves
performing simultaneous hypothesis tests on each of thousands or millions of measured variables.
Classical multiple hypothesis testing methods utilizing the family-wise error rate were developed for
performing just a few tests, where the goal is to guard against any single false positive occurring.
However, in the high-dimensional setting, a more common goal is to identify as many true positive
findings as possible, while incurring a relatively low number of false positives. The false discovery
rate is designed to quantify this type of trade-off, making it particularly useful for performing many
hypothesis tests on high-dimensional data sets.

Hypothesis testing in high-dimensional genomics data sets has been particularly influential in
increasing the popularity of false discovery rates (Storey & Tibshirani 2003). For example, DNA
microarrays measure the expression levels of thousands of genes from a single biological sample.
It is often the case that microarrays are applied to samples collected from two or more biological
conditions, such as from multiple treatments or over a time course. A common goal in these studies
is to identify genes that are differentially expressed among the biological conditions, which involves
performing a hypothesis tests on each gene. In addition to incurring false positives, failing to
identify truly differentially expressed genes is a major concern, leading to the false discovery rate

being in widespread use in this area.

Mathematical Definitions

Although multiple hypothesis testing with false discovery rates can be formulated in a very general
sense (Storey 2007, Storey et al. 2007), it is useful to consider the simplified case where m hypothesis
tests are performed with corresponding p-values p1, po, ..., pm. The typical procedure is to call null
hypotheses statistically significant whenever their corresponding p-values are less than or equal to
some threshold, ¢ € (0,1]. This threshold can be fixed or data-dependent, and the procedure for
determining the threshold involves quantifying a desired error rate.

Table 1 describes the various outcomes that occur when applying this approach to determining
which of the m hypothesis tests are statistically significant. Specifically, V' is the number of Type 1
errors (equivalently false positives or false discoveries) and R is the total number of significant null

hypotheses (equivalently total discoveries). The family-wise error rate (FWER) is defined to be
FWER = Pr(V > 1),

and the false discovery rate (FDR) is usually defined to be (Benjamini & Hochberg 1995):

1% 1%
FDR_E[M] _E[R’R>O] Pr(R > 0).
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Table 1: Possible outcomes from m hypothesis tests based on applying a significance threshold

t € (0,1] to their corresponding p-values.

Not Significant (p-value > ¢) | Significant (p-value < ¢) | Total
Null True U |4 mo
Alternative True T S mi
w R m

The effect of “R Vv 1”7 in the denominator of the first expectation is to set V/R = 0 when R = 0.
As demonstrated in Benjamini & Hochberg (1995), the FDR offers a less strict multiple testing
criterion than the FWER, which is more appropriate for some applications.

Two other false discovery rate definitions have been proposed in the literature, where the main
difference is in how the R = 0 event is handled. These quantities are called the positive false
discovery rate (pFDR) and the marginal false discovery rate (mFDR), and they are defined as
follows (Storey 2003, Storey 2007):

1%
pFDR:E[R'R>O],

E[V]

mFDR = m
Note that pFDR = mFDR = 1 whenever all null hypotheses are true, whereas FDR can always
be made arbitrarily small because of the extra term Pr(R > 0). Some have pointed out that this
extra term in the FDR definition may lead to misinterpreted results, and pFDR or mFDR offer
more scientifically relevant values (Zaykin et al. 1998, Storey 2003); others have argued that FDR
is preferable because it allows for the traditional strong control criterion to be met (Benjamini &
Hochberg 1995). All three quantities can be utilized in practice, and they are all similar when the

number of hypothesis tests is particularly large.

Control and Estimation

There are two approaches to utilizing false discovery rates in a conservative manner when determin-
ing multiple testing significance. One approach is to fix the acceptable FDR level beforehand, and
find a data-dependent thresholding rule so that the expected FDR of this rule over repeated studies
is less than or equal to the pre-chosen level. This property is called FDR control (Shaffer 1995, Ben-
jamini & Hochberg 1995). Another approach is to fix the p-value threshold at a particular value
and then form a point estimate of the FDR whose expectation is greater than or equal to the true
FDR at that particular threshold (Storey 2002). The latter approach has been useful in that it

places multiple testing in the more standard context of point estimation, whereas the derivation of



algorithms in the former approach may be less tractable. Indeed, it has been shown that the point
estimation approach provides a comprehensive and unified framework (Storey et al. 2004).

For the first approach, Benjamini & Hochberg (1995) proved that the following algorithm for
determining a data based p-value threshold controls the FDR at level o when the p-values corre-
sponding to true null hypotheses are independent and identically distributed (i.i.d.) Uniform(0,1).
Other p-value threshold determining algorithms for FDR control have been subsequently studied
(e.g., Benjamini & Liu 1999). This algorithm was originally introduced by Simes (1986) to control
the FWER when all p-values are independent and all null hypotheses are true, although it also

provides control of the FDR for any configuration of true and false null hypotheses.

FDR Controlling Algorithm  (Simes 1986; Benjamini & Hochberg 1995)

1. Let pqy < ... < pgn) be the ordered, observed p-values.
2. Calculate k = max{l <k <m:py < a-k/m}.

3. If k exists, then reject null hypotheses corresponding to p;) < ... < Py Otherwise, reject
nothing.

To formulate the point estimation approach, let FDR(¢) denote the FDR when calling null
hypotheses significant whenever p; < ¢, for i = 1,2,...,m. For ¢t € (0,1], we define the following

stochastic processes based on the notation in Table 1:

V(t) = #{true null p; : p; < t},
R(t) = #{pi:pi <t}

In terms of these, we have

FDR(t) = E [R(‘;)(t&l] .

For fixed t, Storey (2002) provided a family of conservatively biased point estimates of FDR(¢):

o) - t

FDR(t) = ROV

The term mo(\) is an estimate of mg, the number of true null hypotheses. This estimate depends

on the tuning parameter X, and it is defined as

It can be shown that E[mg(\)] > mo when the p-values corresponding to the true null hypotheses
are Uniform(0,1) distributed (or stochastically greater). There is an inherent bias/variance trade-
off in the choice of A\. In most cases, when A gets smaller, the bias of my(\) gets larger, but

the variance gets smaller. Therefore, A can be chosen to try to balance this trade-off. Storey &



Tibshirani (2003) provide an intuitive motivation for the mg(\) estimator, as well as a method for
smoothing over the mo(A) to obtain a tuning parameter free mg estimator. Sometimes instead of
mo, the quantity 7o = mg/m is estimated, where simply 7o(\) = mo(\)/m.

To motivate the overall estimator FT)\R(t) = mo(A)-t/[R(t) V1], it may be noted that mg(\)-t ~
V(t) and [R(t) V 1] & R(t). It has been shown under a variety of assumptions, including those of
Benjamini & Hochberg (1995), that the desired property E [F/D\R(t)} > FDR(t) holds.

Storey et al. (2004) have shown that the two major approaches to false discovery rates can be
unified through the estimator F/D\R(t) Essentially, the original FDR controlling algorithm can be
obtained by setting mo = m and utilizing the p-value threshold ¢}, = max {t : F/[ﬁ%(t) < a}. By
allowing for the different estimators mg(\), a family of FDR controlling procedures can be derived
in this manner. In the asymptotic setting where the number of tests m is large, it has also been

shown that the two approaches are essentially equivalent.

Q-values

In single hypothesis testing, it is common to report the p-value as a measure of significance. The
“gq-value” is the FDR based measure of significance that can be calculated simultaneously for
multiple hypothesis tests. Initially it seems that the g-value should capture the FDR incurred
when the significance threshold is set at the p-value itself, FDR(p;). However, unlike Type I error
rates, the FDR is not necessarily strictly increasing with an increasing significance threshold. To
accommodate this property, the g-value is defined to be the minimum FDR (or pFDR) at which
the test is called significant (Storey 2002, Storey 2003):

g-value(p;) = minFDR(¢) or g-value(p;) = min pFDR().
t2p; t2p;

To estimate this in practice, a simple plug-in estimate is formed, for example:

g-value(p;) = min F/]i%(t)
t>p;
Various theoretical properties have been shown for these estimates under certain conditions, notably
that the estimated g-values of the entire set of tests are simultaneously conservative as the number

of hypothesis tests grows large (Storey et al. 2004).

Bayesian Derivation

The pFDR has been shown to be exactly equal to a Bayesian derived quantity measuring the
probability that a significant test is a true null hypothesis. Suppose that (a) H; = 0 or 1 according to
whether the ith null hypothesis is true or not, (b) H; - Bernoulli(1—mp) so that Pr(H; = 0) = 7

and Pr(H; = 1) = 1 -, and (¢) P;|H; "X (1— H;)-Go+ H; - Gy, where Gy is the null distribution



and G is the alternative distribution. Storey (2001, 2003) showed that in this scenario

pFDR(t) = E[‘};Eg’R(t)>0}

= Pr(H; =0|P, <t),

where Pr(H; = 0|P; < t) is the same for each i because of the ii.d. assumptions. Under these
modeling assumptions, it follows that q-value(p;) = ming>,, Pr(H; = 0|P; < t), which is a Bayesian
analogue of the p-value — or rather a “Bayesian posterior Type I error rate.” Related concepts were
suggested as early as Morton (1955). In this scenario, it also follows that pFDR(t) = [ Pr(H; =
0|P; = pi)dG(pi|pi < t), where G = moGp + (1 — m9)G1. This connects the pFDR to the posterior
error probability Pr(H; = 0|P; = p;), making this latter quantity sometimes interpreted as a local
false discovery rate (Efron et al. 2001, Storey 2001).

Dependence

Most of the existing procedures for utilizing false discovery rates in practice involve assumptions
about the p-values being independent or weakly dependent. An area of current research is aimed at
performing multiple hypothesis tests when there is dependence among the hypothesis tests, specif-
ically at the level of the data collected for each test or the p-values calculated for each test. Recent
proposals suggest modifying FDR controlling algorithms or extending their theoretical characteriza-
tions (Benjamini & Yekutieli 2001), modifying the null distribution utilized in calculating p-values
(Devlin & Roeder 1999, Efron 2004), or accounting for dependence at the level of the originally
observed data in the model fitting (Leek & Storey 2007, Leek & Storey 2008).
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