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EXPLORATORY DATA ANALYSIS

We were together learning how to use the analysis of variance, and perhaps
it is worth while stating an impression that I have formed-that the analy-
sis of variance, which may perhaps be called a statistical method, because
that term is a very ambiguous one — is not a mathematical theorem, but
rather a convenient method of arranging the arithmetic. Just as in arith-
metical textbooks — if we can recall their contents — we were given rules
for arranging how to find the greatest common measure, and how to work
out a sum in practice, and were drilled in the arrangement and order in
which we were to put the figures down, so with the analysis of variance; its
one claim to attention lies in its convenience.

The Future of Data Analysis
J. W. TUKEY

IN 1986, the Vietnamese government began a policy of textitdoi moi (reno-
vation), and decided to move from a centrally planned command economy

to a ”market economy with socialist direction“. As a result, Vietnam was able
to evolve from near famine conditions in 1986 to a position as the world’s third
larger exporter of rice in the mid nineties. Between 1992 and 1997 Vietnam’s
GDP rose by 8.9% annually (World Bank, 1999).

The first Vietnam Living Standards Survey (VLSS) was conducted in 1992-93
by the State Planning Committee (SPC) (now Ministry of Planning and Invest-
ment) along with the General Statistical Office (GSO). The second VLSS was
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6 CHAPTER 1. EXPLORATORY DATA ANALYSIS

conducted by the GSO in 1997-98. The survey was part of the Living Stan-
dards Measurement Study (LSMS) household surveys conducted in a number
of developing countries with technical assistance from the World Bank.

The second VLSS was designed to provide an up-to-date source of data on
households to be used in policy design, monitoring of living standards and
evaluation of policies and programs. One part of the evaluation was whether
the policies and programs that were currently available were age appropriate
for the population. For example, if a country has a higher proportion of older
people, then there needs to be programs available that appeal to that sector of
the population. Another concern was whether the living standards for differ-
ent sections of the country were equitable. We will use data from the second
VLSS (available in the VLSSage.dat and VLSSperCapita.txt data sets) to exam-
ine the following research questions,

1. What is the age distribution for the Vietnamese population?
2. Are there differences in the annual household per capita expenditures

between the rural and urban populations in Vietnam?
3. Are there differences in the annual household per capita expenditures

between the seven Vietnamese regions?

1.1 Research Question #1: What is the age
distribution for the Vietnamese population?

The variable age from the VLSSage.dat contains the ages of 28,633 individu-
als (in years ranging from 0 to 99) living in the 5999 sampled households. To
examine this research question, we need to read in the data and look at some
graphical and numerical summaries.

> ages <- read.table("VLSSage.dat", header=T)
> attach(ages)
> head(ages)

age
1 68
2 70
3 31
4 28
5 22
6 7

> hist(age, xlab="Age", main="")
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Figure 1.1: Distribution of 28,633 ages from the VLSS data.

The hist() function in R can be used to create a histogram. The function takes
a required argument of the variable name (e.g., age). The optional arguments
xlab= and main= can be used to add a label to the x-axis and a title to the
histogram respectively. The histogram of ages is displayed in Figure 1.1.

The Number of Bins in a Histogram

Statistical packages such as R, use a default number of bins Ð or equivalently a
default bin width, but this default can often be an arbitrary choice. The matter
of selecting the number of bins or classes to be used in the histogram is not
trivial. Quite often, the bin width is a subjective choice for the methodologist,
using contextual knowledge about the data. In R, the The breaks= argument
can be used in the The hist() function to specify the number of breakpoints
between histogram bins.

From Figure 1.2, we can see that the choice of 55 bins gives a clear picture
of three distinct generations, the young, the middle-aged and the older indi-
viduals. With ten bins, the three groups are not clearly visible. The argument
breaks=n added to the histogram() function changes the number of bins. The
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Figure 1.2: Distribution of 28,633 ages from the VLSS data with 55, 40, 25, and 10
bins.

code to produce Figure 1.2 is shown below. The par(mfrow=c(2,2)) command
sets the layout of the graphical output to display the four graphs in a 2x2 array.

> par(mfrow=c(2,2))
> hist(age, xlab="Age", main="55 Bins", breaks=55)
> hist(age, xlab="Age", main="40 Bins", breaks=40)
> hist(age, xlab="Age", main="25 Bins", breaks=25)
> hist(age, xlab="Age", main="10 Bins", breaks=10)
> par(mfrow=c(1,1))

Several statisticians have provided formulae for choosing the number of bins
(e.g., Freedman & Diaconis, 1981; Scott, 1979; Sturges, 1926). All of these meth-
ods have been employed in the The hist() function. The argument breaks="sturges",



1.1. RESEARCH QUESTION #1: WHAT IS THE AGE DISTRIBUTION FOR THE
VIETNAMESE POPULATION? 9

breaks="fd", or breaks="scott"will use the appropriate methodology to com-
pute the number of bins. If the argument breaks= is omitted, the Sturges method
is used.

Recently, Wand (1997) proposed a series of ”plug-in“ rules for selecting the
width (and therefore the number) of the bins in a histogram. The justification
for the rules lies in the fact that the resulting histogram provides a good esti-
mate for the density. The rules are relatively complicated to compute, but the
dpih() function from the KernSmooth library can be used to compute the ap-
propriate width for each bin. In our case, the zero-stage rule yields a width of
1.33.

> library(KernSmooth)
> dpih(age)

[1] 1.329865

Using this bin width in the range of data — from 0 to 100 — produces about
68 bins (100/1.33 = 68). A histogram with 68 bins is shown in Figure 1.3.

Figure 1.3: Distribution of the VLSS age data with 68 bins.

This choice of 68 bins yields three modal clumps in the histogram from which
emerge two interesting features. The second mode in the age distribution oc-
curs near the age of 40, and has lower frequency, in part because of lives lost
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during the war, which ended in 1975 with the reunification of North and South
Vietnam. One can also see the effect of decreasing fertility rates in the fact that
frequencies decrease as ages decrease from about 16 to zero, which has been
documented in the literature (e.g., Haughton, Haughton, & Phong, 2001). The
question arises as to whether three subpopulations might occur in the distri-
bution of ages. The population pyramid based on the 1999 Vietnam census
does seem to indicate the presence of three subpopulations (see General Sta-
tistical Office, 2001).

Kernel Density Estimators

Although a histogram can be very useful for examining the distribution of a
variable, the graph can differ dramatically depending on the number of bins
used. This problem can be overcome (partially) using nonparametric density
estimation. Density estimation is an attempt to estimate the probability den-
sity function of a variable based on the sample, but less formally it can be
thought of as a way of averaging and smoothing the histogram.

Since a density function encloses an area of 1, we first must rescale the his-
togram so that the total area under the smoothed line (the area within the
bins) equals one. In other words, we examine the proportion of cases at spe-
cific points in the histogram rather than the frequency counts.

Kernel density estimation is essentially a sophisticated form of locally weighted
averaging of the distribution. It uses a weight function (i.e., kernel) that en-
sures the enclosed area of the curve equals one. The kernal density estimator
creates an estimate of the density by placing a "bump" at each data point and
then it sums the "bumps" up using,

p(x) = 1
nh

∑
K

(
x −Xi

h

)
(1.1)

where K is the kernel density function (the "bump" function); x is the point
where the density is estimated; Xi is the center of the interval; and h is the
bandwidth (i.e., window half-width). Note that both the kernel function and
the bandwidth must be specified by the methodologist.
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Selecting the Kernel Function and Bandwidth

A choice of kernel density function recommended in the literature is the Epanech-
nikov kernel1. This kernel is the most efficient in minimizing the error when
approximating the true density by the kernel density (see Silverman 1986).

Selecting the bandwidth h, is primarily a matter of trial and error. The smaller
h is, the more details are shown on the graph of the kernel density. As the
bandwidth increases, the density curve becomes smoother. In Figure 1.4 we
give four Epanechnikov kernel density estimators for the age in years of each
individual in the 1998 VLSS. The second kernel density with a bandwidth of 2
clearly shows three age groups: the young, middle and old generation.

Ideally a bandwidth is chosen that is small enough to reveal detail in the graph,
but large enough to produce random noise. Statistical theory provides some
guidance by suggesting,

h = .9σn−1/5 (1.2)

Notice that as the sample size increases, the bandwidth is narrower which per-
mits the graph to show a finer degree of detail. The population standard de-
viation σ is generally unknown, so we replace it with an adaptive estimator of
spread, namely,

A = min
{
σ̂,

IQR
1.349

}
(1.3)

This is a precaution since if the population is not normally distributed, the
sample standard deviation tends to be over-inflated which would then pro-
duce a poor estimate of the population density. An even further caveat is that
if the underlying density distribution is substantially non-normal — as in our
example, the bandwidth produces a window width 2h that is oftentimes too
wide (i.e., the line is too rough). However it is good value to use as a starting
point and the value can be adjusted downward until the resulting plot be-
comes too rough.

In our example, the starting bandwidth would be,

h = .9(20.284)(.128) = 2.344

Using R to Plot a Kernel Density Estimate

The density() function can be used to obtain a kernel density estimate of
a distribution in R. Within this function, we need to specify the kernel and

1There are other choices that are often used including the familiar standard normal den-
sity function.
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Figure 1.4: Kernel density estimates of the population distribution of Vietnamese
ages with bandwidths of .5, 2.344, 5, and 10.

bandwidth using kernel="epanechnikov" and bw="2.344". Since this is the
default bandwidth selected by R in the density() function, the bw= argument
can be omitted. Lastly, we need to call the plot() function on our density()
function2 Using trial and error to adjust the bandwidth downward from our
initial estimate, it can be found that a good bandwidth might be around 2.1.
The R code used to produce a plot of the kernel density (see Figure 1.5) esti-
mate is as follows.

> plot(density(age, kernel="epanechnikov"), main="")
> plot(density(age, kernel="epanechnikov", bw=2.1), main="")

2Note that all of the arguments (e.g.,main=, xlab=) can be used in the plot() function.
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Figure 1.5: Kernel density estimate of the population distribution of Vietnamese
ages with bandwidth of 2.1.

1.2 Research Question #2: Are there differences in
the annual household per capita expenditures
between the rural and urban populations in
Vietnam?

The data set VLSSperCapita.txt contains data on the household per capita ex-
penditures for 5999 households along with two demographic variables. We
will read in the data and examine it using the following code in R.
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> household <- read.table("VLSSperCapita.txt", header=T)
> attach(household)
> head(household)

household dong region urban dollar regionName
1 12225 2764.8999 1 0 184.32666 Northern Uplands
2 13314 940.9336 1 0 62.72891 Northern Uplands
3 12101 1786.9258 1 0 119.12839 Northern Uplands
4 7505 2130.5046 1 1 142.03364 Northern Uplands
5 11709 1149.1510 1 0 76.61007 Northern Uplands
6 15309 1461.8467 1 0 97.45645 Northern Uplands

Plots that Allow Comparisons

Plots of the kernel density estimates (KDE) are particularly useful when com-
paring two or more groups. For example, we could compare the distribution
of the household per capita expenditures for the urban and rural populations
in Vietnam. In R, we will need to plot the KDE for the rural population, and
then plot the KDE for the urban population on the same graph. We will need
to differentitate between the two plots by specifying arguments in the plot()
function and also by adding a legend to our plot. Before we do anything, we
need to split up our data based on whether the household is urban or rural.

Subsetting Data Using R

Since we have a factor that specifies whether each household in our sample
is urban (urban = 1) or rural (urban = 0), we can use the subset() function to
only plot a subset of our data, namely just the rural households. This function
takes two arguments: the variable that you would like subsetted, and a logical
expression that indicates how to subset. For example to obtain a subset of the
household per capita expenditures (in dollars) for only the rural households
(the urban variable is equal to 0), we would use,

> subset(dollar, urban==0)

This can then be used in the density() function as

> plot(density(subset(dollar, urban==0), kernel="epanechnikov"), main="")

To make the plot easier to read, we will set the limit on the y-axis. To differen-
tiate between the two plots, we can also change the type of line (e.g., dotted).
Both of these are arguments in the plot() function. Namely, ylim=c(min,
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max) and lty=value. Finally, we will add a label to the x-axis (xlab="label".
The complete code for all of this is,

> plot(density(subset(dollar, urban==0), kernel="epanechnikov"), main="", lty=2,
ylim=c(0,.008), xlab="Expenditures per capita")

Adding a Plot Using R

We can draw on top of a plot using the lines() function. We will add a density
plot of the household per capita expenditures for the urban households to our
existing plot of the rural households. To help further to tell the two plots apart,
we will plot this KDE using a solid line. The code is,

> lines(density(subset(dollar, urban==1), kernel="epanechnikov"), main="", lty=1)

Adding Other Helpful Pieces to the Plot

It would be helpful to readers if we added a legend to our plot. This can be
done using the legend() function. The following code adds a legend to the
top-righthand corner of our plot.

> legend("topright", legend=c("Rural","Urban"), lty=c(2,1))

The last piece we will add to the plot is a vertical line that depicts the poverty
line in Vietnam. This can be done using the abline() function and specifying
the argument v=value. We add a red, solid line at the poverty line of $119.32
using the code,

> abline(v=119.32, lty=1, col="red")

In Figure 1.6, the kernel densities estimates for the per capita expenditures of
urban (solid) and rural (dotted) households are plotted on the same graph. A
vertical line positioned at the poverty line3 has also been added to the graph.
It is quite clear on the graph that the distribution of per capita expenditure
is shifted to the right, and is more variable, for urban households. Rural areas
are more homogeneous, with shared poverty except for a rather small number
of wealthier households.

3The poverty line was established at 1,789.871 thousand VND for 1998 by the General
Statistical Office. This is equivalent to $119.32.
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It is also worth noting that the poverty line is close to the mode of the rural
expenditure per capita distribution, which means that a small increase in ex-
penditure per capita is enough to shift many of the rural households to a posi-
tion above the poverty line. This is one likely explanation for recent dramatic
reductions in poverty rates in Vietnam. As the poverty line moves further to
the right, further reductions in poverty rates are likely to be smaller in magni-
tude.
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Figure 1.6: Kernel density estimate of the rural and urban population distribution
of household per capita income.

Robust Estimators

Now that we have seen that the two populations seem to differ in per capita
expenditures, we would like to quantify that difference. Often this is quantifi-
cation is carried out by providing the sample mean difference between the
two groups. Unfortunately, both of these distributions are heavily skewed. In
such cases, the sample mean is often not the best estimate of the center of the
population distribution. Thus, the difference between the two sample means
may offer a poor summary of how the two populations differ and the mag-
nitude of that difference. For that reason we need to use a more robust esti-
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mator than the sample mean. Two robust estimates of central tendency are
described and illustrated below.

Winsorized Mean

One problem with the mean is that the tails of a distribution can dominate its
value. If a measure of location, such as the mean, is intended to reflect what
the typical subject — or in our case, household — is like, the mean can fail
because its value can be inordinately influenced by a very small proportion
of the subjects who fall in the tails of the distribution. One strategy for dealing
with this problem is to give less weight to values in the tails of the distribution,
and pay more attention to the values near the center. A specific strategy for
implementing this idea is to winsorize4 the distribution.

Let us compute the 20% winsorized mean for the 1730 urban households. In
essence, winsorizing the distribution changes the highest x% of the scores
to the next smallest score, and changes the x% smallest scores to the next
largest score. In our example, the highest and lowest 20% of the urban per
capita expenditures (346 households from each end of the distribution) will
be changed into the next nearest score. The 346 lowest values will be changed
to $173.01, the 346 highest values will be changed to $467.59, and the middle
1038 values will remain the same. Thus,

µ̂W20% = 173.01+173.01+173.01+·· ·+467.59+467.59+467.59
1730

= 303.24

The winsorized mean for the urban sample is $303.24. We can use the same
process to compute a 20% winsorized mean for the rural sample as well. This
turns out to be $143.23. This would suggest that a robust estimate of the mean
difference in per capita expenditures between the rural and urban popula-
tions is around $160.

R does not have a native function to compute the winsorized mean. To obtain
the winsorized mean, we have to create our own function. You can copy and
paste the code taken from Wilcox (2005) and provided in Table 1.1 into R.

The function can then be used to find the winsorized mean using the follow-
ing R code. In this code we first create two new variables, urb and rur, by using

4Among the mathematicians recruited by Churchill during the Second World War was
one Charles Winsor. For his efforts in removing the effects of defective bombs from the mea-
surement of bombing accuracy, he received a knighthood and we received a new statistical
tool — winsorized means.
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win<-function(x,tr=.2){
#
# Compute the gamma Winsorized mean for the data in the vector x.
# tr is the amount of Winsorization
#

y<-sort(x)
n<-length(x)
ibot<-floor(tr*n)+1
itop<-length(x)-ibot+1
xbot<-y[ibot]
xtop<-y[itop]
y<-ifelse(y<=xbot,xbot,y)
y<-ifelse(y>=xtop,xtop,y)
win<-mean(y)
win

}

Table 1.1: R function to compute winsorized mean.

the subset() function. The tr=.2 argument in the win() function specifies the
percentage to winsorize from each end of the distribution.

> urb <- subset(dollar, urban==1)
> rur <- subset(dollar, urban==0)
> win(urb, tr=.20)

[1] 303.2407

> win(rur, tr=.20)

[1] 143.2265

Trimmed Mean

Rather than winsorize, another strategy for reducing the effects of the tails of a
distribution is simply to remove them. This is the strategy employed by trim-
ming. To find a trimmed mean, the x% largest and smallest scores are deleted
and the mean is computed using the remaining scores. Let us compute the
20% trimmed mean for the 1730 urban households. We would eliminate the
346 (20%) households with the highest and lowest per capita expenditures
from the data. The trimmed mean is then found by,

µ̂t20% = 173.01+173.25+173.32+·· ·+466.97+467.50+467.59
1038

= 291.87
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The 20% trimmed mean for per capita expenditures for households in the
sample in rural areas can be found in a similar manner and is equal to $139.47.
The difference in per capita expenditures is then found to be around $152.

The biggest advantage to the winsorized and trimmed means is that the stan-
dard errors associated with them will be smaller than it will be for the untrimmed
mean. This is especially true for distributions that are long or heavy tailed. In
these distributions a robust measure of central tendency will often provide a
better estimate of the population mean. One last note that bears mentioning,
is that the median is also sometimes used as a robust estimator, but In fact,
the median is just a trimmed mean with the percentage of trim equal to,

1
2
− 1

2n

To obtain a trimmed mean using R, we need only add the trim= argument
to the original mean() function. The code to obtain the 20% trimmed means
looks like the following using the same urban and rural variables we created
earlier.

> mean(urb, trim=.2)

[1] 291.8671

> mean(rur, trim=.2)

[1] 152.4

Winsorized Variance

It is also possible to compute a robust estimate for the variation in a data set.
This is useful especially if one wishes to use inferential methods (e.g., hypoth-
esis tests or confidence intervals). The winsorized variance is computed as,

σ̂2
W = 1

n −1

∑
(wi − µ̂W )2 (1.4)

where wi are the values in the winsorized distribution, and µ̂W is the win-
sorized mean. The winsorized standard deviation can be found by taking the
square root of the winsorized variance. The winsorized variance is used as
an accompanying measure of variation for both the trimmed and winsorized
means. Wilcox (2005) has once again provided a function for computing this
robust measure using R. The code provided in Table 1.2 should be copied into
R.
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winvar<-function(x,tr=.2, na.rm=F){
#
# Compute the gamma Winsorized variance for the data in the vector x.
# tr is the amount of Winsorization which defaults to .2.
#

if(na.rm)x<-x[!is.na(x)]
y<-sort(x)
n<-length(x)
ibot<-floor(tr*n)+1
itop<-length(x)-ibot+1
xbot<-y[ibot]
xtop<-y[itop]
y<-ifelse(y<=xbot,xbot,y)
y<-ifelse(y>=xtop,xtop,y)
winvar<-var(y)
winvar

}

Table 1.2: R function to compute winsorized variance.

The function can then be used to find the winsorized variance using the fol-
lowing R code.

> winvar(urb, tr=.2)

[1] 12831.72

Decisions about when to use a robust estimator such as a trimmed or win-
sorized mean and also about how much to trim or winsorize are not trivial
tasks. Trimming or winsorizing 20% of the data is common, while for very
heavy tailed distributions, 25% may be more appropriate. The interested stu-
dent is referred to Rosenberger and Gasko (1983) or Wilcox (2005).

1.3 Research Question #3: Are there differences in
the annual household per capita expenditures
between the seven Vietnamese regions?

The Socialist Republic of Vietnam consists of 61 provinces (see Figure 1.7);
that encompass seven regions of the country. These regions are represented
by different colors on the map: from North to South, Northern Uplands (yel-
low), Red River Delta (light blue), North Central Coast (purple), Central Coast
(red), Central Highlands (green), Southeast (brown), and Mekong Delta (blue).
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Figure 1.7: Map of Vietnam color coded by region.

To begin to examine our third research question, we would again want to
examine a graphical summary of the data. With so many different groups it
would be difficult to read a graph including seven plots of the kernel density
estimates. It is more common to begin by examining side-by-side boxplots.
Using the R code below we obtain the graph depicted in Figure 1.8. We will
also add a horizontal line at the poverty line of $119.32.

> boxplot(dollar ~ regionName, xlab="Region",
ylab="Expenditures per capita")

> abline(h=119.32, col="red")

Displaying Means along with Standard Errors

Often in statistical work, a graph of the sample means is provided as a vi-
sual depiction of the differences between multiple groups. Each of the means
should also be accompanied by a measure of the variation inherent in the
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Figure 1.8: Side-by-side boxplots of per capita expenditures by region.

group (e.g., the SEM). The use of error bars helps us facilitate a more accurate
interpretation of what is actually happening in the population. It is also in line
with the guidelines suggested by the APA appointed Task Force on Statistical
Inference, which suggest, ”in all figures, include graphical representations of
interval estimates whenever possible (Wilkinson, 1999, p. 601).“ A plot of the
region means and accompanying error bars is shown in Figure 1.9.

To create this graph using R, we can use the plotmeans() function found in
the gplots library. The code used to create the error bar graph can be found
below.

> library(gplots)
> plotmeans(dollar ~ regionName, data=household, connect=F, p=.95, n.label=F,

xlab="Region", ylab="Expenditures per capita")

From the graphs depicted in Figure 1.9 and Figure 1.8, it appears that there
are differences in the per capita expenditures between the regions. The South
East region seems to have the highest household per capita expenditure. It is
quite clear that the distribution of expenditures per capita in the Southeast
region (which includes Ho Chi Minh City and hinterland) is typically higher
and more variable, compared with other regions. Also, more than 75% of the
people sampled from the South East region are above the poverty line. The
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Figure 1.9: Means and error bars of per capita expenditures by region.

distributions in the other six regions seem fairly similar. It is worthwhile to
note that in the two most impoverished regions, the Central Highlands and
Northern Uplands, have close to 50% of their household below the poverty
line. Based on our findings to the second research question, it is perhaps not
surprising that both of these regions are primarily rural.




