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ABSTRACT: In human and animal genetics dense single nucleotide polymorphism (SNP) panels are widely 
used to describe genetic variation. In particular genomic selection in dairy cattle has become a routinely applied 
tool for prediction of additive genetic values of animals, especially of young selection candidates. The aim of the 
study was to investigate how well an additive genetic value can be predicted using various sets of approximately 
3000 SNPs selected out of the 54 001 SNPs in an Illumina BovineSNP50 BeadChip high density panel. Effects 
of SNPs from the nine subsets of the 54 001 panel were estimated using a model with a random uncorrelated 
SNPs effect based on a training data set of 1216 Polish Holstein-Friesian bulls whose phenotypic records were 
approximated by deregressed estimated breeding values for milk, protein, and fat yields. Predictive ability of 
the low density panels was assessed using a validation data set of 622 bulls. Correlations between direct and 
conventional breeding values routinely estimated for the Polish population were similar across traits and clearly 
across sets of SNPs. For the training data set correlations varied between 0.94 and 0.98, for the validation data 
set between 0.25 and 0.46. The corresponding correlations estimated using the 54 001 panel were: 0.98 for the 
three traits (training), 0.98 (milk and fat yields, validation), and 0.97 (protein yield, validation). The optimal 
subset consisted of SNPs selected based on their highest effects for milk yield obtained from the evaluation 
of all 54 001 SNPs. A low density SNP panel allows for reasonably good prediction of future breeding values. 
Even though correlations between direct and conventional breeding values were moderate, for young selection 
candidates a low density panel is a better predictor than a commonly used average of parental breeding values.
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Since Meuwissen et al. (2001) proposed the ap-
plication of genetic values predicted from a large 
number of single nucleotide polymorphisms (SNPs) 
for selection, many studies related to develop-
ment of methodology and practical application of 
genomic selection have been conducted (for recent 
reviews see Hayes et al., 2009; Calus, 2010; Liu et 
al., 2011). Challenges remain, however: (i) in view 
of rapidly growing sizes of training data sets, how 
to deal with the large dimensions of the statistical 

model used for estimation of SNP effects; and (ii) 
in view of widespread genotyping of all members 
of active populations and all incoming selection 
candidates, how to reduce genotyping costs. While 
dimension reduction can be realized by the choice 
of an appropriate statistical model, a primary way 
of cost reduction is the application of cheaper, 
low density SNP panels. A currently widespread 
procedure in genomic evaluations is to use sparse 
commercially available 3K or 6K SNP panels geno-
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typed on very many selection candidates for the 
imputation to the standard 50K panel (Habier et 
al., 2009; Van Raden et al., 2009; Weigel et al., 2009; 
Dassonneville et al., 2012; Mulder et al., 2012). 
Recently Dassonneville (2012) and Mulder (2012) 
compared how various SNP selection procedures 
influence the quality of imputation. Our study 
is focused on a more basic question in checking 
how well different sets of sparse SNPs are able 
to capture the true additive genetic variability of 
production traits and on investigating predictive 
ability of low density panels without imputation. 
In particular, we use real data from the Polish 
Holstein-Friesian population in order to compare 
various strategies of selecting approximately 3000 
SNPs out of the Illumina BovineSNP50 BeadChip 
panel, and prediction of genomic breeding values 
using model with random uncorrelated SNP effects.

MATERIAL AND METHODS

Animals

The training data set comprised 1216 Polish 
Holstein-Friesian bulls. Additionally, 622 bulls 
were used for validation. Bulls were born between 
1987 and 2004. The majority of bulls in the train-
ing data set (87%) were born between 1997 and 
2003, while in the validation dataset between 2001 
and 2004 (54%). The age distribution of the geno-
typed animals is presented in Figure 1. For training 
bulls the daughter effective contributions (EDCs) 
ranged between 5 and 2756 effective daughters for 
production traits.

Dependent variables

Phenotypic records were represented by der-
egressed estimated breeding values (dEBV) for 
milk, protein, and fat yields, and were obtained 
from the national conventional routine genetic 
evaluation. EBVs were calculated using the random 
regression test day model following Strabel et al. 
(2005) and deregressed following the approach 
described by Jairath et al. (1998). For the training 
dataset EBVs ranged between –691.0 and 1795.0 kg 
(± 377.9 kg) for milk yield, between –40.4 and 
56.2 kg (± 10.5 kg) for protein yield, and between 
–31.8 and 54.0 kg (± 12.9 kg) for fat yield. The 
distribution of EBVs very well represented the 
distribution of EBVs for the whole population of 
Holstein-Friesian bulls active in Poland (Figure 1).

Genotypes

DNA was extracted from semen collected and 
maintained in the DNA repository at the Insti-
tute of Animal Genetics, University of Warmia 
and Mazury. SNP genotypes were obtained using 
the Illumina BovineSNP50 BeadChip (revision 1) 
containing 54 001 SNPs.

The selection of SNPs for the statistical analysis 
was based on the genotypes observed among 1216 
bulls from the training dataset. In the first step, 
SNPs which were not mapped to any chromo-
some, had a minor allele frequency below 0.01, 
or showed a call rate below 90%, were discarded. 
As a result 7734 SNPs, making 14.32% of the total 
54 001 SNPs, were excluded from further consid-

0

50

100

150

200

250

1978
1981

1982
1983

1984
1985

1986
1987

1988
1989

1990
1991

1992
1993

1994
1995

1996
1997

1998
1999

2000
2001

2002
2003

2004

Birth year

N
um

be
r o

f b
ul

ls

training data set validation data set

Figure 1. Distribution of 
genotyped bulls across 
birth years. Grey bars 
represent animals from 
the training data set, 
black bars represent ani-
mals from the validation 
data set
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eration. The remainder of 46 267 SNPs was used 
for construction of low density panels.

Estimation of linkage disequilibrium

Pairwise linkage disequilibrium between linked 
SNPs was expressed by the r2 statistics (r2 was 
estimated using PLINK software package (Purcell 
et al., 2007)):

r2 =  
                 D2 

       pA(1 –  pA) pB(1 –  pB)

where: 
D  = deviation from Hardy-Weinberg equilibrium
pA, pB  = frequencies of the more frequent allele at 

SNPs A and B

Construction of 3K SNP panels

Nine SNP subsets were generated using the fol-
lowing criteria:

Subset S1 (3000 SNPs). 100 SNPs randomly 
selected from each chromosome.

Subset S2 (2513 SNPs). The number of SNPs on 
each chromosome was set proportionally to the 
number of QTL listed by the Cattle Quantitative 
Trait Locus Database release from September 2009 
(Hu et al., 2007). The SNPs were approximately 
evenly spaced on each chromosome. Note that here 
the highest number of SNPs (245) was selected for 
BTA14 while the lowest (4) for BTAX.

Subset S3 (2981 SNPs). Uniformly distributed 
across the SNP ranking along the genome, which 
corresponds to selection of approximately every 
15th SNP. As a consequence the highest number 

of SNPs (192) represented BTA01 and the lowest 
number (38) represented BTAX.

Subset S4 (2994 SNPs). SNPs uniformly distrib-
uted along the nucleotide sequence. The highest 
number of SNPs (187) was located on BTA01, 
and the fewest SNPs (33) were selected for BTAX.

Subset S5 (2976 SNPs). The number of SNPs on 
each chromosome was proportional to the number 
of segments of approximately equal length. Within 
each segment one SNP with the highest minor al-
lele frequency was selected. The highest number 
of SNPs (183) represented BTA01 and the lowest 
number (49) represented BTA28.

Subset S6 (3000 SNPs). SNPs selected based on 
their highest estimates for milk yield as obtained 
for the high density SNP set using a univariate, 
multiple SNP, mixed model by Szyda et al. (2009). 
An additional criterion was that the pairwise link-
age disequilibrium between SNPs, expressed by 
r2, is below 0.80. For S6 the highest number of 
171 SNPs was mapped to BTA01, and the fewest 
SNPs (41) were located on BTA28.

Subset S7 (3000 SNPs). SNPs selection was as 
for S6 except that estimated effects on stature 
instead of on milk yield were considered. The 
highest (172) and lowest (51) numbers of SNPs 
were selected for BTA1 and BTA25, respectively.

Subset S8 (3000 SNPs). SNPs selection was as for 
S6 except that estimated effects on type instead of 
on milk yield were considered. The highest (180) 
and lowest (53) numbers of SNPs were selected 
for BTA1 and BTA25, respectively.

Subset S9 (2886 SNPs). SNPs corresponding to 
the Illumina GoldenGate Bovine3K Genotyping 
BeadChip except for SNPs on BTAY. For this subset 
the highest (175) number of SNPs was located on 
BTA01, and the lowest (48) on BTA25.

Table 1. Number of common SNPs (above diagonal) and percentage of common SNPs (below diagonal) between data 
subsets

S1 S2 S3 S4 S5 S6 S7 S8 S9
S1 185 205 212 204 215 195 218 179
S2 7.36 134 162 172 176 174 161 169
S3 6.88 4.50 201 188 203 195 190 215
S4 7.08 5.41 6.71 211 209 195 189 210
S5 6.86 5.79 6.32 7.10 285 289 262 343
S6 7.17 5.87 6.77 6.97 9.59 478 572 256
S7 6.50 5.80 6.50 6.50 9.72 15.93 1820 234
S8 7.27 5.37 6.33 6.30 8.81 19.07 60.67 247
S9 6.20 5.86 7.45 7.28 11.54 8.87 8.11 8.56



139

Czech J. Anim. Sci., 58, 2013 (3): 136–145 Original Paper

The number and percentage of SNPs common 
across subsets are shown in Table 1. For most sub-
set combinations the percentage of common SNPs 
is below 9%. Similarity was the highest, over 60% 
(1820 SNPs), between S7 and S8, and relatively high 
between S6 and S8 (19.07%, 572 SNPs) as well as 
between S6 and S7 (15.93%, 478 SNPs).

Estimation of SNP effects

The model with random uncorrelated SNP effect 
was used to estimate SNP effects from different 
subsets of data. The model includes:

y = µ + Za + ε

where: 
y  = vector of dEBV for milk, protein, or fat yield (m: 1)
μ  = overall mean
a  = vector of random additive SNP effects assum-

ing a ~ N(0, I(σ̂2
a/n)), with I being the identity 

matrix and σ̂2
a representing the additive genetic 

variance (n: 1) 
Z = corresponding design matrix with elements of 

–1, 1, and 0 and for two homozygous and a het-
erozygous SNP genotype respectively

ε  = vector of random errors assuming ε ~ N(0, Dσ2
ε)  

with D being a diagonal matrix with the recip-
rocal of effective daughter contributions cor-
responding to dEBV and σ2

a denoting error 
variance (m: 1)

n  = number of SNPs
m  = number of genotyped animals

The model assumes that all of the observed ad-
ditive genetic variance is due to the random effect 
of SNPs. The additive genetic variance (σ̂2

a) was not 
estimated but was assumed as known, based on the 
estimates used in the Polish national genetic evalu-
ation model for a corresponding trait. Estimation 

of the parameters underlying considered model 
was based on solving the mixed model equations:

   ̂b     XTR–1X        XTR–1Z    
–1 

 XTR–1y [   ]=[                                    ]   [            ]    ̂g     ZTR–1X    ZTR–1Z + G      ZTR–1y

where: 
XT  = design matrix for fixed effects (vector of 1)
ZT = design matrix for random SNP effects
G  = covariance matrix for random SNP effects ex- 

pressed by I(σ̂2
a/n)

R  = residual covariance matrix expressed by D(σ̂2
e)

b̂, ĝ  = vectors of fixed effects represented by a general 
mean and random effects represented by SNP 
effects, respectively

y  = vector of dEBV

Estimation of direct genomic values

A direct genomic value of ith bull (DGVi) is de-
fined as the sum of additive effects of SNPs: 

DĜVi =
n

 Σ Zij  ̂aj 

                
j=1

where:
Zij  = element of the design matrix for SNP effects cor-

responding to animal i and SNPj
aj  = estimate of the additive effect of SNPJ

RESULTS AND DISCUSSION

Correlations between EBV and DGV

For the training data set Pearson’s correlations 
between deregressed estimated breeding values 
and direct genomic values for production traits 
are shown in Table 2. The correlation ranged from 

Table 2. Pearson’s correlation coefficients between estimated breeding values and direct genomic values for bulls 
from the training dataset

Trait
Subset

54K SNP chip1

S1 S2 S3 S4 S5 S6 S7 S8 S9
Milk yield 0.94 0.94 0.95 0.94 0.95 0.98 0.96 0.95 0.91 0.98
Protein yield 0.95 0.94 0.95 0.95 0.95 0.97 0.96 0.95 0.91 0.98
Fat yield 0.94 0.94 0.95 0.94 0.95 0.96 0.95 0.95 0.90 0.98

1results were estimated for Szyda et al. (2011) study, note that there were differences in validation data set structure between 
Szyda et al. (2011) and the present study
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0.90 to 0.98. Comparing the subsets, the values 
were always the highest for S6 (milk yield 0.98, 
protein yield 0.97, fat yield 0.96) and the lowest 
for S9 (milk yield 0.68, protein yield 0.69, fat yield 
0.64). The corresponding correlations based on 
the high density panel were 0.98 for the three 
production traits (Szyda et al., 2011).

The correlations for the validation data set are 
shown in Table 3. As expected, the correlations were 
weaker than for the training data set and ranged 
between 0.25 (S9, fat yield) and 0.46 (S1, milk yield), 
which was less than the corresponding correlations 
of 0.38 for milk yield, 0.37 for protein yield, and 0.32 
for fat yield, estimated for the high density panel 

Table 3. Pearson’s correlation coefficients between estimated breeding values and direct genomic values for bulls 
from the validation dataset

Trait
Subset

S1 S2 S3 S4 S5 S6 S7 S8 S9 54K SNP chip1

Milk yield 0.46 0.43 0.41 0.40 0.37 0.45 0.39 0.39 0.27 0.38
Protein yield 0.45 0.45 0.44 0.42 0.39 0.46 0.41 0.43 0.36 0.37
Fat yield 0.32 0.39 0.28 0.27 0.32 0.39 0.39 0.32 0.25 0.32

1results were estimated for Szyda et al. (2011) study, note that there were differences in validation data set structure between 
Szyda et al. (2011) and the present study
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by Szyda et al. (2011). Comparing the subsets, only 
S9 resulted in markedly weaker correlations. The 
higher correlations observed are a consequence 
of different validation data set structures between 
Szyda et al. (2011) and the current study. Bulls in 
both validation data sets do not overlap – the former 
study used validation bulls which are younger than 
training bulls, the current study used validation bulls 
belonging to the same generations (1997–2003) as 
the training bulls (1987–2004). Although no large 
differences between traits were found, the correla-
tions were somewhat weaker for fat yield.

Rank correlations between EBV and DGV 
for the training data set

Spearman’s rank correlations among the top 100 
bulls ranked based on EBV are shown in Table 4. 
Considering differences among subsets, the cor-
relations were the strongest for S6 and the weakest 
for S9, the same as observed for Pearson’s cor-

relations for milk yield. Figure 2 shows the rank 
comparisons for the worst subset S9 and the best 
subset S6. The results indicated that for the best 
subset the two rankings overlapped, especially for 
the top 15 animals. For the worst scenario both 
rankings overlapped only for the top 10 animals.

Regression of EBV on DGV

Considering the training data set, for all combi-
nations of traits and subsets the regression coef-
ficients of EBV on DGV were close to the expected 
value of one (Table 5). The optimal results were 
obtained for subset S6. As expected, the regression 
coefficients were always lower for the validation 
bulls (Table 6). Trait with the lowest regression 
coefficients was fat yield (0.36–0.50) and the trait 
with the highest coefficients was protein yield 
(0.52–0.63). For the best subset S2 regression coef-
ficients were lower by 0.41 for milk yield, 0.07 for 
protein yield, and 0.12 for fat yield than if using 
the high density panel. Subset S9 resulted in lower 
regression coefficients than the other subsets. 
Still, for most of the subset-trait combinations 
they were higher than a corresponding regression 
coefficient involving parent average (PA).

Comparison of SNP subsets

Based on the imposed data preselection criteria 
(minor allele frequency and call rate), the average 
SNP reduction over all chromosomes was 85.49% 

Table 4. Spearman’s rank correlations coefficients between estimated breeding values and direct genomic values for 
top 100 bulls from the training dataset

Trait
Subset

S1 S2 S3 S4 S6 S7 S8 S9
Milk yield 0.68 0.73 0.75 0.67 0.83 0.77 0.75 0.59
Protein yield 0.66 0.62 0.69 0.70 0.80 0.75 0.74 0.62
Fat yield 0.64 0.68 0.73 0.63 0.75 0.69 0.70 0.65

Table 5. Regression coefficients of estimated breeding values on direct genomic values for the training dataset

Trait
Subset

S1 S2 S3 S4 S6 S7 S8 S9
Milk yield 1.10 1.08 1.09 1.09 0.95 1.06 1.06 1.12
Protein yield 1.09 1.08 1.09 1.08 0.99 1.06 1.05 1.11
Fat yield 1.07 1.07 1.08 1.09 0.99 1.05 1.05 1.10

Table 6. Regression coefficients of estimated breeding 
values (EBV) on direct genomic values and of EBV on 
parent average (PA) for the validation dataset

Trait
Subset

S1 S2 S3 S4 S6 S7 S8 S9 PA
Milk 
yield 0.64 0.56 0.52 0.56 0.57 0.50 0.50 0.42 0.53

Protein 
yield 0.62 0.63 0.62 0.59 0.58 0.56 0.57 0.52 0.40

Fat  
yield 0.42 0.50 0.37 0.34 0.47 0.47 0.40 0.36 0.19
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and ranged from 77.57% for BTX to 89.51% for 
BTA20. This set was used to form the eight SNP 
subsets considered in this study. For S1, S3, and 
S4 an arbitrary selection approach was used, where 
the selection of SNPs was related neither to Link-
age Disequilibrium (LD) between them, nor to the 
information on genetic architecture underlying the 
traits under study. It can be hypothesized that such 
an arbitrary selection of SNPs may lead to loss of a 
substantial part of genetic information, and in con-
sequence reduce the predictive ability of a model. 
An intermediate approach was represented by S2, 
for which SNPs at each chromosome were selected 
proportionally to the total (regardless of the trait) 
number of QTL reported in the QTLdb. The largest 
number of QTL (245) was reported for BTA14, and 
consequently many more SNPs were selected for 
this chromosome than in the remaining subsets. 
The arbitrary approach presented in S3, S4, and S5 
was used widely in imputation studies where good 
SNPs arrangement among imputed SNPs is the key 
to high imputation accuracy (Dassonneville et al., 
2012; Mulder et al., 2012). S6, S7, and S8 were not 
generated arbitrarily but were based on linkage 
disequilibrium and SNP effect estimates. Although 
r2 was one of the selection criteria, the average r2 
in those subsets, which varied from 0.11 to 0.12, 
was higher than for the remaining subsets, indicat-
ing that the high estimates from previous studies 
picked SNPs in high LD. Moreover, the minor allele 
frequency for those three subsets was also higher; 
it varied from 0.31 to 0.32 instead of 0.26 to 0.27 
as found for the remaining subsets, showing that 
preselection yielded more informative SNPs. Finally, 
S9 representing the Illumina Bovine3K BeadChip 
contains SNPs selected based on even spacing on 
the cattle genome and their minor allele frequency.

Although Van Raden et al. (2009) indicated that 
careful preselection of SNPs is the key to higher 
prediction accuracy, in our study there were no 
marked differences in correlations between EBV and 
DGV across subsets. As it could have been expected, 
the correlations were the highest for S6, S7, and 
S8, especially for S6. A similar tendency has also 
been estimated by Vazquez et al. (2010). However, 
if a standard SNP set is expected to be used across 
the whole range of traits, the advantage of S6, S7, 
and S8 would be close to zero, genetic correlations 
between production and many other traits subject to 
routine recording. A possible way of circumventing 
the problem is to select SNPs based on a composite 
selection index and to include parent average into 

the prediction model, as proposed by Vazquez et al. 
(2010). Moreover, we argue that in order to avoid an 
overrepresentation of SNPs remaining in high LD 
with genes having a strong effect on selection index 
(like DGAT1) an additional criterion for a low density 
panel should be pairwise LD between SNPs. Weigel et 
al. (2009) also estimated that subsets selected based 
on SNP effects were associated with better predictive 
ability than arbitrarily selected subsets, although 
they reported a much more pronounced difference 
than the one we found. Interestingly, despite having 
almost 500 fewer SNPs than the other subsets, S2 
did not show lower correlations, indicating that it 
was well able to capture underlying genetic varia-
tion of the analyzed traits. On the other hand, the 
commercially available S9 usually showed lower 
correlations. 

Comparison of SNP effect estimation 
models

Models with a random SNP effect have been in-
vestigated in many studies and always gave strong 
correlations between EBV and DGV as well as 
Bayesian models (Meuwissen et al., 2001; Habier 
et al., 2007; Moser et al., 2009; Van Raden et al., 
2009). The only drawback of such models is the 
complexity of estimating model parameters, es-
pecially for large data sets, which are based on 
BLUP or on the Bayesian principle. The important 
advantage of the BLUP approach used in our study 
is that it requires a simple assumption of a constant 
variance component for each SNP and thus it is 
independent of the unknown number of QTL un-
derlying an analyzed trait (Daetwyler et al., 2010). 
In the context of the selection of SNPs based on 
their effects estimated from a high density chip, 
the effects from a Bayesian approach cannot be 
directly interpolated to a low density chip (Habier 
et al., 2009). To circumvent this problem, either 
equal variances for all SNPs can be assumed, as 
was done in our study, or the effects of all SNPs 
can indirectly be incorporated into the low den-
sity panel through probabilities of descent of the 
missing marker genotypes (Habier et al., 2009).

Comparison of model predictive ability

As expected, the correlation coefficients esti-
mated within the training data set were generally 
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very strong, since the same bulls that provide EBVs 
are used for estimating SNP effects. Yet the esti-
mated rank correlation coefficients showed that 
the ranking of best bulls based on EBV did not 
reflect the ranking based on DGV, a feature very 
unfavourable from the breeding industry perspec-
tive. A lower correlation was especially evident 
for the 100 bulls with the top EBVs. However, 
when fewer top bulls (up to 15) are involved, the 
rankings based on EBV and DGV showed a very 
good agreement.

As already shown by many studies using both 
simulated (Meuwissen et al., 2001; Calus and 
Veerkamp, 2007; Habier et al., 2007; Muir, 2007) 
and real (Hayes et al., 2008; Moser et al., 2009; 
Habier et al., 2010) data sets, the correlations be-
tween EBV and DGV for validation bulls are much 
lower. For a real data set, a composite trait “lifetime 
net merit” and a smaller SNP panel, Weigel et al. 
(2009) obtained stronger correlations (0.25–0.57) 
than the ones estimated from our validation data 
(0.22–0.47). Habier et al. (2009) also estimated 
higher accuracies using a simulated data set. The 
accuracies obtained in their study appear to be in-
dependent of the number of simulated QTL, which 
is in agreement with our result based on real data, 
where similar correlations were obtained for milk 
yield and fat yield, a trait dominated by a gene with 
a large effect (DGAT1). This is caused by limited 
allocation of large effects to a single gene in the 
model with random SNP effects in comparison 
to Bayesian models and a limited size of the data 
set. Also correlations estimated by Vazquez et al. 
(2010), ranging between 0.50 and 0.65, are stronger 
than values obtained in our analysis. The lower 
correlations estimated in our study may have been 
due to differences in: (i) heritability – Habier et 
al. (2009) assumed very high heritability of 0.5 in 
contrast to 0.30 for milk yield and 0.29 for fat and 
protein yields estimated for the Polish Holstein 
Friesian population (http://www-interbull.slu.se/
national_ges_info2/framesida-ges.htm), (ii) size of 
the training data set – 3305 bulls in Weigel et al. 
(2009) and Vazquez et al. (2010) versus 1216 bulls 
in our data set, (iii) structure of our validation data 
set with some of the validation bulls being older 
than bulls from the training data set.

An important difference from the training dataset 
is that the correlations obtained for production 
traits clearly varied across traits, with the lowest 
correlations obtained for fat yield (Table 1). This 
trend was previously demonstrated by Hayes et 

al. (2008) and Vazquez et al. (2010) for evenly 
spaced SNP panels. The loss in accuracy for fat 
yield could be explained by estimating the effect 
of DGAT1, or more precisely, of SNPs in strong 
LD with the gene. If the effects of the gene, which 
has a predominant impact on fat yield, are not 
precisely estimated in the training data set, or 
if recombination alters LD between SNPs and 
DGAT1, the accuracy estimated for the validation 
bulls decreases more rapidly than is observed for 
traits with a pure polygenic inheritance mode.

The regression coefficients of EBV on DGV for 
the validation set varied from 0.34 to 0.63 and 
were lower than the regression coefficients for the 
training dataset. Moser et al. (2009) gave similar 
results for young Holstein-Friesian bulls. The 
lower correlation coefficients for the validation 
dataset are perhaps also due to the age range of 
validated and training bulls. The main group of 
DGV predicted animals was born between 2003 
and 2004. However, in contrast to other studies, in 
this work there were no situations where all older 
bulls were in the training data and all younger bulls 
were in the test data. A few bulls in the valida-
tion set were born earlier than the bulls from the 
training set, such as the group of bulls born before 
1987. Thus we have to deal with backward DGV 
prediction of animals whose EBVs were estimated, 
on average, from more than 100 daughters. Moser 
et al. (2009) suggested that accuracies derived 
by cross-validation are likely to overestimate the 
actual accuracies of future predictions for some 
traits in young bulls. The solution to this prob-
lem might be to use combined SNP and pedigree 
information or to use H matrix incorporating full 
pedigree information (Legarra et al., 2009).

CONCLUSION

Using a real data set from the Polish popula-
tion of Holstein Friesian dairy cattle, we showed 
that applying a low density panel consisting of 
approximately 3000 SNPs allows for reasonably 
good prediction of EBVs for production traits. At 
least for most of the tested combinations higher 
regression coefficients were obtained for regressing 
DGV on EBV than PA on EBV, which indicates that 
even a low density SNP panel is a better predic-
tor of EBV for selection candidates than PA. In 
practice, an optimal solution would be to use a 
combination of both sources of information in the 
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form of Genomically Enhanced Breeding Values. In 
view of results of the present and previous studies 
(Szyda et al., 2011), in order to be able to describe 
the additive genetic variation of production traits 
using a low density panel, special attention should 
be paid to (i) the genotyping quality of SNPs, in 
order to maximize the informativeness of geno-
types, and (ii) the selection of markers capturing 
the underlying major genes either through their 
high estimates on a composite selection index or 
through their high LD to known QTL.
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