Unravelling the Genetic Background of Clinical Mastitis in Cattle Using Whole Genome Sequence

J. Szyda^{1,2}, M. Mielczarek^{1,2}, M. Frąszczak¹, G. Minozzi^{3,4}, R. Giannico⁴, J L. Williams⁵, K. Wojdak-Maksymiec⁶ ¹Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland; ²National Research Institute of Animal Production, Wroclaw, Poland; ³Department of Veterinary Medicine, University of Milan, Milan, Italy; ⁴Fondazione Parco Tecnologico Padano, Lodi, Italy; ⁵Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia; ⁶Department of Animal Genetics, West Pomeranian University of Technology, Szczecin, Poland Presenting author: magda.mielczarek@upwr.edu.pl

Objectives

Characterization of links between single nucleotide polymorphisms (SNPs), copy number variants (CNVs) and the incidence of clinical mastitis (CM)

Conclusions

Methods

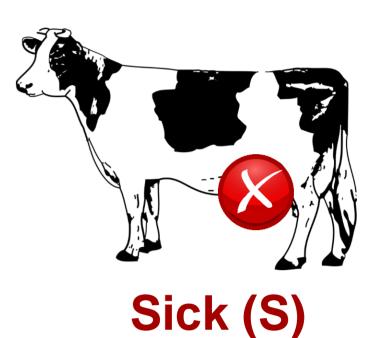
Alignment to UMD 3.1

Post-alignment

processes

- CNVs play an important role in the susceptibility to CM
- Identified genes are involved in immune response
- Deletions more severe consequences on reducing resistance against clinical mastitis, than...
- Duplications on increasing resistance to clinical mastitis

CNV detection


Half-sibs CNV

comparison

Data set

32 Polish Holstein Friesian cows 16 paternal half-sibs Illumina HiSeq 2000 (WGS) Coverage 5x - 17xNCBI BioProject PRJNA359667

Healthy (H)

Results

SNPs

Introns of genes with differences in SNP genotypes between sick and healthy COWS

RefSeq coding ring finger **protein 122** (10/16 half-sibs)

 cell viability and immune response

MET proto-oncogene receptor tyrosine kinase (9/16 half-sibs)

processes related to inflammation, cancerogenesis

WRN gene (8/16 half-sibs)

premature aging in humans, increased susceptibility to infection

APP: amyloid beta precursor

- bactericidal and antifungal activities in human
- molecular markers for SCM in ruminants

FOXL2: forkhead box L2

role in inflammation

Acknowledgements

Functional annotation

Enrichment analysis

SNP detection

Half-sibs SNP

comparison

SSFA2: sperm specific antigen 2

- associated with SCS = indicator of CM
- overlapps with QTL for bovine immunoglobulin G

ADORA2A: adenosine A2a receptor

- modulating tissue response to inflammation
- in mice highly expressed in mammary gland

DGVa: Hou et al. 2011

CNV DELETIONS

Exons deleted in a sick cow, but present in its healthy half-sib exhibits potential causal influence CM (at least 7 half-sibs pairs)

NDUFS6: NADH:ubiquinone oxidoreductase subunit S6

QTL for SCS = CM indicator DGVa: Boussaha et al. 2015

TXNRD2: thioredoxin reductase 2

 candidate for influencing susceptibility to S.aureus

DGVa: Hou et al. 2011

OTUD3: deubiquitinase 3

associated with inflammatory bowel disease in humans

DGVa: Keel et al. 2017