Genome-Wide Association Study for Leg Disorders in Austrian Braunvieh and Fleckvieh

Barbara Kosinska-Selbi, Tomasz Suchocki, Magdalena Fraszczak, Christa Egger-Danner, Hermann Schwarzenbacher, Joanna Szyda

EAAP, 2019

Objectives

Mining the **genetic heterogeneity** between Braunvieh and Fleckvieh

EAAP, 2019

Material

- Cows
 - 1 999 Fleckvieh (FLV), 985 Braunvieh (BSW)
- 2 SNPs
 - Geneseek Genomic Profiler HD BeadChip
 - 76 932 SNPs
 - 74 762 SNPs (MAF 0.01; call rate 99 %)
- 3 Phenotype
 - total number of leg disorders until DIM 300th
 - EBV

Material

Methods/genome-wide association study (GWAS)

Methods/EBV prediction

$$y = X\beta + Z_u u + Z_v v + Z_p p + \varepsilon$$

y	total number of leg disorders scored till DIM 300
β	fixed effects: a general mean, breed (Braunvieh or Fleckvieh), parity (1,2,3,4 or >4), calving year-season,
	hoof status recording code (four levels)
u	$\sim \! N(0, A \sigma_u^2)$ EBV
v	$\sim\!\!N(0,I\sigma_v^2)$ random veterinarian effect
p	$\sim\!N(0,I\sigma_p^2)$ random permanent environmental effect
ε	$\sim N(0, I\sigma_{\epsilon}^2)$ residual

Methods/GWAS model

$$\boldsymbol{u} = \boldsymbol{\mu} + \boldsymbol{X}\boldsymbol{b} + \boldsymbol{Z}\boldsymbol{g} + \boldsymbol{e}$$

- $oldsymbol{u}$ EBV
- μ general mean
- **b** additive effect of all single SNP
- X design matrix {0, 1, 2}
- $\boldsymbol{g} \sim N(0, \boldsymbol{G}\sigma_g^2)$ cumulated effect of all remaining SNPs,
- G corresponds to the genomic covariance matrix between cows calculated based on SNPs.
- $e \sim N(0, I\sigma_e^2)$ residual

Results/GWAS

Results/GWAS

Results/GWAS

SNP	Position [bp]**	Additive effect	FDR*	Annotation**
ARS-BFGL-NGS-92033	1:3,303,269	0.018	7.5-10-6	intergenic, between MIS18A and HUNK
BTA-89698-no-rs	1:43,542,488	0.012	0.0001	intergenic, between DCBLD2 and COL8A1
ARS-BFGL-NGS-6521	1:50,767,507	0.007	0.0150	intergenic, between CBLB and CCDC54
BovineHD0400014448	4:52,028,036	0.029	1.4-10-11	intergenic, between CAV2 and TES
BovineHD0400014458	4:52,079,221	0.029	1.4-10-11	intergenic, between CAV2 and TES
Hapmap48066-BTA-73690	5:61,220,624	0.010	0.0530	intergenic, closest to NEDD1
ARS-BFGL-NGS-85328	5:81,769,685	0.008	0.0430	intergenic, between CCDC91 and PTHLH
ARS-BFGL-NGS-103113	6:115,208,599	0.016	0.0210	Intergenic, between ADRA2C and LRPAP1
ARS-BFGL-NGS-100768	6:114,116,280	0.010	0.0020	Intron of SORCS2
ARS-BFGL-NGS-25175	13:13,590,662	0.008	0.0120	intergenic, closest to CELF2
ARS-BFGL-NGS-101509	13:23,590,146	0.019	3.3·10 ⁻⁷	intergenic, between SPAG6 and PIP4K2A
ARS-BFGL-NGS-63852	14:55,768,446	0.010	0.0040	intergenic, between TMEM74 and EMC2
Hapmap55901-rs29024589	16:12,125,227	0.010	0.0007	intergenic between B3GALT2 and GLRX2
ARS-BFGL-NGS-109246	16:12,280,122	0.008	0.0060	intergenic, between UCHL5 and RGS2
Hapmap51828-BTA-38538	16:36,037,389	0.007	0.0006	intergenic, between RGS7 and XCL1
BovineHD2400006669	24:24,273,191	0.002	0.0820	intergenic, between CCDC178 and KLHL14

^{*}False Discovery Rate

^{**}ARS UCD1.2.assembly

Methods/principal components analysis

Methods/Local principal components analysis between breeds/ Machalanobis distance

$$D_M = \sqrt{d'V^{-1}d}$$

$$d = [\ \overline{\varepsilon}_{1BSW} - \overline{\varepsilon}_{1FLV}, \overline{\varepsilon}_{2BSW} - \overline{\varepsilon}_{2FLV}, ..., \overline{\varepsilon}_{10BSW} - \overline{\varepsilon}_{10FLV}\]$$

$$\overline{\varepsilon}_1$$
 $\overline{\varepsilon}_2$..., $\overline{\varepsilon}_{10}$ eigenvectors

V - pooled covariance matrix of all eigenvectors

$$T = \frac{n_B n_F}{n_B + n_F} \cdot \frac{n_B + n_F - 11}{10(n_B + n_F - 2)} \cdot d'V^{-1}d \sim F_{10,n_B + n_F - 11}$$

 n_x number of cows representing each breed

Comparison of LD patterns

Methods/Differences in pairwise LD structure between breeds

$$S = \left[\sum_{i=1}^{n} [(v_{i21} + v_{i22}) - (v_{i12} + v_{i21})]^{2} \right] + \left[\sum_{i=1}^{n} [(v_{i11} + v_{i12}) - (v_{i21} + v_{i22})]^{2} \right]$$

S – general meausure of variability

 v_{ij} — product of linkage disequilibrium covariance matrix of breed_i and the vector of eigenvectors corresponding to breed_j

(Garcia, 2012)

EAAP. 2019

Conclusions

- I Genetic heterogeneity in the number of leg disorders between Fleckvieh and Braunvieh
- 2 Differences in LD structure between Fleckvieh and Braunvieh in some genomic regions
- 3 Differences in LD structure partially explain genetic heterogeneity

EAAP. 2019

Acknowledgements

- NCN grant No. 2015/19/B/NZ9/03725 as well as by the Efficient Cow and the Gene2Farm projects
- 2 Biostatistics group, Department of Genetics, Wroclaw University of Environmental and Life Sciences
 - Magdalena Fraszczak
 - Joanna Szyda
 - Tomasz Suchocki
- 3 ZuchtData, Vienna, Austria
 - Christa Egger-Danner,
 - Hermann Schwarzenbacher