Derivation of economic values for Red breeds Breeding goals & conservation strategies for the European Red Dairy Breeds

Barbara Kosińska-Selbi, Christin Schmidtmann, Sarune Marasinskiene, Morten Kargo

Work Package VII

Consortium & collaborations

- Morten Kargo (Aarhus University, Leader WP 7)
- Jehan Ettema (Aarhus University, SimHerd developer)
- Søren Østergaard (Aarhus University)
- Christin Schmidtmann (Kiel University)
- Georg Thaller (Kiel University)
- Dirk Hinrichs (Kassel University)
- Barbara Kosińska-Selbi (Wroclaw University)
- Joanna Szyda (Wroclaw University)
- Sarune Marasinskiene (Lithuanian University of Health Science)
- Ruta Sveistiene (Lithuanian University of Health Science)
- Violeta Juskiene (Lithuanian University of Health Science)

Project interactions

Project goals

Formulate a breeding plan, which simultaneously assures economic viability and maintain genetic variation of European Red Dairy breeds

ReDiverse, 2019

Objectives

- 1 Formulate of breeding goals for ERDB
 - estimate the economic values
- Optimization of breeding schemes
 - Stochastic simulation of breeding schemes
- Benefits
 - Long-term genetic gain
 - Genetic diversity
 - Uniqueness of ERDB

Breeding goals (BG)

A **breeding goal** is the specification of the traits to be improved including the emphasis given to each trait. It gives the direction in which we want to improve the population.

$$\mathsf{TMI} = \mathsf{EV}_1 * trait_1 + \mathsf{EV}_2 * trait_2 + \ldots + \mathsf{EV}_n * trait_n$$

Economic value (EV)

Breeding goals for European Red Dairy Cattle

Schmidtmann, 2019

Methodology of delivering EV

- Input biological parameters of Your herds
- SimHerd simulations
- Simulated 40 years uncorrected economic values
- Correction for double counting

Methodology/Bio-economic software SimHerd

- Software used for delivering EV through stochastical simualations
- Developed at Aaarhus University as decision tool for cattle farmers
- Allows to evaluated the economic consequences in different scenarios (e.g. different feeding systems)
- INPUT: biological & management parametrs of the herd
- OUTPUT: Annual net return & structural parameters of the herd

Methodology/Bio-economic software SimHerd

HERD is treated as a biological system !!

Derivation of economic values in SimHerd

Bio-economic model SimHerd (Østergaard et al., 2005)

- calculated every week using cow-specific lactation curves and energy requirements
- → Influencing factors: age, parity, lactation stage, reproductive status, health status

Stochastic

- Heat observation rate
- Conception rate
- · Sex and viability of born calves
 - Diseases → Basis risk
 - + risk factors
 - Lactation stage
 - Parity number
 Production level
 - BCS
 - Existence of other diseases
- → Generating natural occuring variation

Mechanistic

- Summing up all revenues and costs of all animals in the herd
- → Annual net return

Methodology/Simulation of herd data

Methodology/traits used for analysis

Production	Health	Fertility	Calving traits	Survival
Energy corrected Milk (ECM) Fat Protein	Ketosis Mastitis Lameness Metritis	Conception rate heifers/cows Insemination rate heifers/cows	Stillbirth	Cow mortality Calf mortality early/late

Methodology/Red Breeds

Economic parameters

Prices and costs of different items used for the derivation of economic values

232

Dystocia (€/treatment)

Highest treatment costs in Scandinavian countries

209

ReDiverse, 2019

180

165

70

Results

Complex	Trait	German Angler	Red and White DP	Danish Red	Swedish Red	Finnish Ayshire
Production	ECM (€/kg)	0.16	0.17	0.21	0.20	0.18
	Fat (€/kg)	1.16	1.19	3.12	3.09	1.40
	Protein (€/kg)	3.17	3.18	4.24	4.12	5.04

Better utilization of roughage

→ lower feed costs

Feed costs: Denmark < Sweden < Finland Fat price: much lower in Finland Protein price: higher in Finland

Results

Complex	Trait	German Angler	Red and White DP	Danish Red	Swedish Red	Finnish Ayshire	Polish Red
Health	Mastitis (%)	-2.69	-2.57	-2.56	-2.82	-3.10	-1.11
%	Lameness (%)	-3.05	-2.70	-2.54	-2.62	-2.65	-1.21
	Ketosis (%)	-1.87	-1.67	-2.62	-2.17	-2.38	-0.71
	Metritis (%)	-1.74	-1.73	-2.05	-2.54	-1.86	-0.80

Differences in EV's are mainly caused by: different treatment costs, withdrawal milk, structural herd effects

Results

Complex	Trait	German Angler	Red and White DP	Danish Red	Swedish Red	Finnish Ayshire	Polish Red
Fertility	Conception rate cows (%)	2.49	1.42	1.77	1.98	2.49	0.84
	Conception rate heifers (%)	1.30	0.84	0.73	1.08	1.19	1.22
	Insemination rate cows (%)	2.12	1.15	1.16	1.27	1.79	0.58
	Insemination rate heifers (%)	0.96	0.73	0.71	0.87	1.15	1.07

Why does Polish Red differ from other breeds?

Szarek et al., 2004

Next steps

Presentation of ideas for common breeding schemes

Stockholm Workshop, 2019

Interactions between genetics and production systems

weighting of traits, recording) Breeding scheme (progeny testing,

genomic selection)

Technologies (MOET, IVF, sexed semen)

Products

The idea in the beginning ...

- Creating one large ERDB population with a common breeding goal
 - ightarrow Loss of genetic diversity between breeds

The idea in the beginning ...

- Forming one large ERDB population with a common breeding goal
 - → Loss of genetic diversity between breeds
- A joint breeding population but keeping pure lines of individual breeds
 - → Trade-off between genetic progress in the merged population and conservation of genetic diversity within and between breeds
 - → Keeping parts of the smaller Red breeds "pure" for cultural reasons or niche production

Three different breeding lines?

- Formation of three commercial breeding lines
- Simulation of consequences for genetic gain and inbreeding

What is needed?

→ Assumptions for simulation of different cluster in ADAM

Arguments for separate breeding lines

Dairy type

- > Higher yielding breeds
- Considering fertility and health (counterpart to Holstein Friesians)
- Kept in intensive housing systems
- > Intensive feeding
 - → High yielding but healthy and fertile dairy breed

Dual purpose

- Higher focus on beef traits (average daily gain, meat quality)
- Economic benefits when milk price is low
- Promotion of good functional traits
- Metabolic robustness
- > "Ecofriendly" breed
- → Lower yielding breed, special emphasis on beef

Robustness

- Lower yielding breeds
- Better health and fertility compared to higher yielding breeds
- High longevity
- Kept outside, pasture-based in harsh environments
- → Resilient breed suitable for "low-input" conditions

ADAM - simulation software

ADAM → Software to simulate breeding schemes in livestock using stochastic simulation (Pedersen et al., 2009)

What is possible with ADAM?

- Development and comparison of breeding strategies
- Simulation of a large variety of breeding programs
- Evaluation of consequences using different technologies (genomic selection, MOET, sexed semen, ...)
- · Support of decision processes

Genetic gain Inbreeding

Workflow in ADAM

What can ADAM do?

- Flexible definition of selection groups
 - → Smallest unit of breeding programs
 - → Within a selection group, all animals have the same breed, sex, source of information, selection intensity, ...
- Breeding traits
 - Multiple traits
 - Test-day traits
 - · Sex specific traits
 - · Traits recorded at slaughter
 - · Selective phenotyping
 - · Simulation of progeny testing

Suggestions – Breeding schemesProgeny testing/ genomic selection

- · Genomic breeding schemes in all three main stream clusters?
- Genomic breeding schemes in the smaller national populations?
- Optimal contribution selection to be used in all populations?
 - Considering different genetic lines within populations
 - Eg. In the dairy cluster Angler, RDM, SRB, FAY, BS, RHF

Suggestions – Breeding schemes How many bulls tested per year?

- · At least 100 bulls tested per year in the three main stream clusters?
- 10-20 in the smaller national populations?
- Optimal contribution selection to be used in all selection paths

Suggestions – Breeding schemes Number of genotyped calves?

- At least 3,000 bull calves within each main stream cluster (OCS)
- At least 3,000 heifer calves within each main stream cluster (OCS)
- 200-500 heifer and bull calves in the smaller national populations (OCS)

closing remarks

WP7, ReDiverse, 2019