Genome-Wide Association Study for Milking Speed and Temperament in Holstein-Friesian bulls

Barbara Kosinska-Selbi, Michalina Jakimowicz, Tomasz Suchocki, Monika Skarwecka, Andrzej Żarnecki, Wojciech Jagusiak, Joanna Szyda

EAAP, 2020

Objectives

Identify SNPs and biological pathways significant such as milking speed (MSP) and temperament (TEM).

(ロ) (回) (三) (三)

Material/Animals

EuroGenomics consortium (December 2019 evaluation)

28 315 Holstein-Friesian bulls

□ Illumina Bovine 50K BeadChip \rightarrow 54 609 SNPs

□ MAF 0.01; call rate 99 % → 46 216 SNPs

Material/Animals

Material/Animals

Methods/Workflow

Methods/GWAS model

$$\mathbf{y} = \boldsymbol{\mu} + \mathbf{Z}_1 \boldsymbol{g} + \mathbf{Z}_2 \boldsymbol{a} + \boldsymbol{\varepsilon} \tag{1}$$

- y vector of deregressed breeding values
- μ general mean
- Z_1 design matrix for SNP genotypes (-1, 0, 1)
- $oldsymbol{g}$ vector of random additive SNP effect
- ${f Z}_2$ design matrix for polygenic effect
- a vector of random additive polygenic effect of bulls
- $\boldsymbol{\epsilon}$ vector of residuals

Methods/Functional annotation model

$$\widehat{g} = Xb + e \tag{2}$$

 $\widehat{m{g}}$ - vector of estimated SNP effects from model (1)

- X design matrix
- **b** is a vector of KEGG pathway effects
- e vector of residuals

Results/GWAS/milking speed

Results/GWAS/milking speed

rs	p-value	Location on ARS-UCD1.2	Genomic variant	Gene name
rs41620153	<0.0001	4: 70201858	intergenic	-
rs41599885	0.0375	5: 37711059	intergenic	-
rs41655452	0.0087	5: 105350319	intron of potassium voltage-gated channel subfamily A member 6	ENSBTAG00000047191
rs41257416	0.0107	5:105474132	3 prime UTR variant of NADH:ubiquinone oxidoreductase subunit A9	ENSBTAG0000005465
rs109422338	0.0226	6: 102771937	intron of protein phosphatase 2 regulatory subunit Bgamma	ENSBTAG0000020598
rs42326910	0.0035	6:103186091	intron of IncRNA	ENSBTAG00000053771
rs109188808	0.0002	6: 104310525	intergenic	-
rs41655065	<0.0001	6: 104350026	intergenic	-
rs41584906	0.0002	19: 7250802	intergenic	-
rs41641989	0.0035	19: 7300658	located in intron of a novel gene	ENSBTAG00000038823
rs110015884	0.0108	19: 7333959	intergenic	ENSBTAG00000021292
rs110036994	<0.0001	19: 7717717	exon of tripartite motif containing 25	ENSBTAG0000009948
rs41579796	0.0259	19: 13808381	3 prime UTR variant of dual specificity phosphatase 14	ENSBTAG00000010279
rs29019325	0.0144	19: 19814327	3 prime UTR variant of transmembrane protein 97	ENSBTAG0000008109
rs29020026	0.0001	19: 59364966	intergenic	-
rs41653204	<0.0001	19: 59437500	intergenic	-
rs109682344	0.0009	19: 59547890	intron of IncRNA	ENSBTAG00000048685
rs43461171	0.0024	20: 6586964	intergenic	102
rs41586565	0.0046	29: 45629483	intron of choline kinase alpha	ENSBTAG00000)10304
rs41626488	0.0014	X: 86996906	intergenic	~

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

EAAP, 2020

Results/GWAS/temperament

Results/GWAS/temperament

rs	p-value	Location on ARS-UCD1.2	Genomic variant	Gene name
rs110689641	0.0122	X: 863652	intergenic	-
rs29025415	0.0492	X: 11576369	intergenic	-
rs41662793	0.0002	X: 62929712	intergenic	-
rs41631246	0.0018	X: 74200611	intron of fibronectin type III domain containing protein 3C1	ENSBTAG0000026025
rs41621075	0.0025	X: 74239322	3 prime UTR variant of TATA-box binding protein associated factor 9b	ENSBTAG0000000895
rs41623769	0.0002	X: 74434775	intron of ATPase copper transporting alpha	ENSBTAG00000010018
rs109814431	0.0068	X: 99134084	intergenic	-
rs41628806	0.0028	X: 131311943	intergenic	-

Results/Functional annotation model

イロト イヨト イヨト イヨト

э

Results/Functional annotation model

Conclusions

- □ Most of significant polymorphisms for MSP are located on chromosome 19.
- □ Including the potential causal mutation of tripartite motif containing 25 (TRIM25).
- □ All of most of the significant polymorphisms for TEM are located on the X chromosome.
- Based on the results from functional annotation model seven KEGG pathaway were found to associated with MSP and only one with TEM.

□ None of the significant pathways were found to be associated with MSP and TEM.

Acknowledgements

All computations were carried out on cluster of The Poznan Supercomputing Center (PCSS).

National Research Institute of Animal Production

Barbara Kosińska-Selbi barbara.kosinska@upwr.edu.pl