Impact of rare SNP variants on the genomic evaluation for conception rate

<u>Tomasz Suchocki</u>, A. Żarnecki, M. Jakimowicz and J. Szyda

To verify whether including rare variants in genomic selection model allows to capture a considerable part of the missing heritability underlying cow conception rate (CR) under selection in dairy cattle.

DATA METHODS RESULTS CONCLUSIONS

AIM

33,534 HF reference bulls

46,216 SNP with MAF>0.01 (ORIG)

54,378 SNP without MAF selection (RARE)

23,448 HF candidate bulls

43,392 HF candidate cows

METHODS

RESULTS CONCLUSIONS

Data

SNP effect estimation

RESULTS CONCLUSIONS

$y = \mu + Z_1 g + Z_2 a + \varepsilon,$

- y deregressed EBV for CR
- μ general mean
- g additive SNP effect $\left(g \sim N\left(0, I\frac{\widehat{\sigma}_{a}^{2}}{N_{snp}}\right)\right)$
- $Z_1 \in \{-1, 0, 1\}$
- a additive polygenic effects $(a \sim N(0, A \widehat{\sigma}_{a^*}^2))$

METHODS

• $\boldsymbol{\mathcal{E}}$ - residuals $(\boldsymbol{\varepsilon} \sim N(0, \boldsymbol{D} \widehat{\sigma}_{\boldsymbol{\varepsilon}}^2))$

MOTIVATION DATA

Interbull validation test

Model 1:

$\boldsymbol{y} = \beta_0 + \beta_1 \cdot \boldsymbol{G}_r + \boldsymbol{\varepsilon},$

- y deregressed EBV for CR
- G_r-GEBV for CR for truncated data set

Model 2:

$y = \beta_0 + \beta_1 \cdot PI_r + \varepsilon,$

• PI_r - pedigree index for CR for truncated data set

MOTIVATION DATA METHODS RESULTS CONCLUSIONS

• Time of estimation SNP effects for ORIG data set = 8,252 seconds

MOTIVATION DATA

• Time of estimation SNP effects for RARE data set = 1,0563 seconds (increasing of 28%)

Data set	β ₁	$SE(\hat{\beta}_1)$	R^2_{model1}	$R^2_{model 2}$	$\left \hat{\beta}_1 - E(\beta_1)\right $	t	Result of Interbull test
RARE	1.131	0.028	20.1	2.4	0.131	4.671	passed
ORIG	1.081	0.027	20.4	2.4	0.081	3.038	passed

Summary statistics of the Interbull genetic trend validation test based on the RARE and ORIG data set.

METHODS

RESULTS

CONCLUSIONS

Results

Re-ranking for CC1 of the 100 top candidate animals (blue = bulls, red = cows) and the 100 top reference bulls based on the RARE data set as compared to the ORIG data set. 2°

MOTIVATION DATA

ATA

METHODS

RESULTS

CONCLUSIONS

Using rare variants in evaluation

- more time consuming
- could have a stronger impact on selection, evaluation and reliability
- influence on ranking on top young bulls and cows

RESULTS

CONCLUSIONS