GENOME-WIDE GENOMIC AND FUNCTIONAL ASSOCIATION STUDY FOR DIRECT CALVING EASE IN HOLSTEIN CATTLE

M. Jakimowicz¹, T. Suchocki^{1,2}, B. Kosińska-Selbi¹, A. Żarnecki², W. Jagusiak^{2,3}, M. Kopeć-Morek^{2,3} and J. Szyda^{1,2}

¹ Biostatistics Group, Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631 Wrocław, Poland

² National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland

³ University of Agriculture in Krakow, Faculty of Animal Science, al. Mickiewicza 24/28, 30-059, Kraków, Poland

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

DATA

• 30.603 bulls form Holstein – Friesian dairy cattle

 Genotypic platform: Illumina BovineSNP50 BeadChip version 2

 Filtration criteria: MAF > 0.01, call rate > 99%

46,216 SNP after quality control

METHODS

1. GWAS with SNPs from the panel:

$$y = X\beta + Z_1g + Z_2a + \varepsilon,$$

- **y** vector of DRP;
- β vector of fixed effects representing a general mean;
- X design matrix;
- Z_1 design matrix for SNP genotypes;
- **g** vector of random additive SNP effects;
- Z_2 design matrix for polygenic effect;
- *a* vector of random bulls' additive polygenic effects
- ε vector of residuals.
- 2. Remapping to newest genome (ARS_UCD1.2) Remap

METHODS II

- 3. Annotation to genes Variant Effect Predictor (VEP)
- 4. Annotation to KEEG pathways and GO:terms DAVID
- 5. Second-stage genome association study using pathway analysis:

$$y^* = \mu + Z^*p + \varepsilon^*$$

- y^* absolute value of the SNP effect for a given trait;
- p random KEGG or GO:TERM pathway effect
- Z^* the incidence matrix for pathway effect p.
- ε^* residual term.

RESULTS

- 59 significant SNPs
- 32/59 highly significant of BTA18
- BTA5 9, BTA7 2, BTA17 7, BTA19 1, BTA21 4, BTA52 1, BTA29 3
- 41 from all, mapped to genes
- 10 significant GO: terms
- No significant KEEGs

CONCLUSIONS

We identified seven significant biological processes.

One significant molecular function.

Two significant cell components.

The majority of significant genes are located on BTA18.

GENOME-WIDE GENOMIC AND FUNCTIONAL ASSOCIATION STUDY FOR DIRECT CALVING EASE IN HOLSTEIN CATTLE

M. Jakimowicz¹, T. Suchocki^{1,2}, B. Kosińska-Selbi¹, A. Żarnecki², W. Jagusiak^{2,3}, M. Kopeć-Morek^{2,3} and J. Szyda^{1,2}

¹ Biostatistics Group, Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631 Wrocław, Poland

² National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland

³ University of Agriculture in Krakow, Faculty of Animal Science, al. Mickiewicza 24/28, 30-059, Kraków, Poland

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

