

Faecal microbiota and their association with heat stress in *Bos taurus*

B. Czech¹, K. Wang², S. Chen², Y. Wang² and J. Szyda ^{1,3}

¹ Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wrocław,

² College of Animal Science and Technology, China Agricultural University, Beijing, China ³ National Research Institute of Animal Production, Balice, Poland

Introduction

- heat stress ⇒ microbiota
- qualitative vs. quantitative condition?

Objective: The identification of bacteria associated with heat stress

Material and methods (1)

Material and methods (2)

Material and methods (3)

	Taxonomic level	Number of unique features	Percent of classified reads
,	Domain	2	100.00
•	Phylum	29	97.94
	Class	72	97.81
	Order	114	97.50
	Family	156	70.16
	Genus	235	20.93
	Species	152	2.35

Material and methods (4)

EBVs:

- rectal temperature
- drooling score
- respiratory score

MME:

$$y = XB + Za + Wp + e$$

where: y – phenotype (RT, DS, RS);

X – design matrix of fixed effects; **Z**, **W** – design matrices of random effects;

 ${f B}-{f matrix}$ of fixed effects (farm-year, parity, lactation stage, milking stage, testing time, temperature-humidity index);

- a vector of animal additive genetic effects;
- p vector of permanent environmental effects; e vector of residual errors

Material and methods (5)

Statistical analysis

- dimension reduction: Uniform Manifold Approximation and Projection (UMAP)
- alpha diversity: Simpson's evenness and Shannon diversity
- association of microbes composition with heat stress: aGLMM-MiRKAT test
- differential abundance analysis: negative binomial regression

Results (1)

UMAP

Results (2)

Alpha diversity correlation analysis

Table: Pearson correlation coefficients between EBVs and alpha diversity measures expressed by Simpson's evenness and Shannon diversity.

EBV	Simpson's evenness	Shannon diversity
Rectal temperature	0.25	-0.04
Drooling score	0.13	0.23
Respiratory score	0.27	0.11

Results (3)

Results (4)

Conclusions

- the overall composition of microbiota was not altered by heat stress
- most of the genera were significantly associated with rectal temperature
- heat stress favors the inhibition of growth of some microbial populations
- differences in microbial abundance may occur due to adapting to climate change

Acknowledgement

- Wroclaw Centre for Networking and Supercomputing
- This work was supported by the Wrocław University of Environmental and Life Sciences (Poland) as the Ph.D. research program
- Supported by China Agriculture Research System of MOF and MARA; The Program for Changjiang Scholar and Innovation Research Team in University (IRT 15R62); National Agricultural Genetic Improvement Program (2130135)

THANK YOU FOR YOUR ATTENTION!

Biostatistics Group
Department of Genetics
Wrocław University of Environmental
and Life Sciences
http://theta.edu.pl

