Challenges of 16S rRNA gene analysis

in Chinese Holstein cows under heat stress conditions

B. Czech ${ }^{1}$, K. Wang ${ }^{2}$, S. Chen ${ }^{2}$, Y. Wang ${ }^{2}$, J. Szyda ${ }^{1,3}$

1. Biostatistics Group, Dep. of Genetics, Wroclaw University of Environmental and Life Sci, Wroclaw, Poland
2. College of Animal Science and Technology, China Agricultural University, Beijing, China
3. National Research Institute of Animal Production, Balice, Poland

Goal

- Assessment of the impact of normalisation and estimation methods on the significance of microbiome on heat stress

Data \& Methods

Microbiome data

- 16S rRNA gene \rightarrow v3 \& v4 regions \rightarrow faecal samples $\rightarrow 136$ Holstein-Friesian cows
- Quantitative outcome \rightarrow rectal temperature
- Analysis on genus level

Normalisation

- Trimmed Mean of M values (TMM)
- Relative Log Expression (RLE)
- Quantile-based (quantile)
- Variance stabilizing (VSN)
- Counts per million (CPM)

Effect estimation and testing

- Negative binomial regression \rightarrow implemented via edgeR
- Linear Gaussian regression \rightarrow implemented in via R Im function

Results

Conclusions

- Unfortunately \rightarrow Different results \rightarrow different analytical approaches
- Fortunately \rightarrow some overlap
- $\approx 50 \%$ of significant genera common to all analytical constellations
- Negative binomial model (edge R) more robust than linear model

