Analysis of the CNV inheritance in swine genome based on combined Illumina and Nanopore data

M. Fraszczak¹, M. Mielczarek^{1,2}, M. Kaźmierczak¹, T. Strzała¹, B. Nowak¹, J.Szyda^{1,2}

¹Biostatistics group, Wroclaw University of Environmental and Life Sciences

²National Research Institute of Animal Production

CONCLUSIONS

- CNVs formed de novo account for 2%-12% of all CNVs
- deletions formed de novo are shorter than inherited
- full siblings are more simmilar each other in structure of CNVs than to other individuals
- duplications in genes are considered to be essential sources of evolutionary innovation and duplications with beneficial effects are likely to be kept
- deletions bring severe consequences by interrupting gene products and causing loss of the biological functions; polymorphisms with large negative effects are likely to be removed from the population by natural selection
- methods based on short read sequencing detected more CNVs than using Oxford Nanopore Technology

Material

- Whole genome sequence with IluminaHiSeq2000 + Oxford Nanopore Technology
- 12 swines (6 trios):

Bioinformatics pipeline

- Alignment to Sscrofa11.1 (BWA-MEM / minimap2)
- Post alignment filtering (Picard & Samtools)
- CNV detection (CNVnator, Pindel, Sniffles, CuteSV)
- Functional annotation (VeP)

Statistical analysis

- Descriptive statistics
- **Permutation tests**
- Wilcoxon sum of rank tests
- Multidimensional scalling
- Correspondence analysis
 - Test for fraction
 - Enrichment analysis
 - Bonferroni correction

200 Intersection size ₁₀₀ -Set size

Results

- Most of deletions (duplications) arise de novo is located on chromosome 3 (16)
- Less CNVs arise *de novo* than inherited (del: P=0.008, dup: P=0.006)

Fraction of CNVs formed de novo hog 1 hog 2 hog 3 hog 5 hog 6 hog 4 0.123 0.138 0.089 0.099 deletion 0.159 0.118 duplication 0.068 0.086 0.061 0.034 0.026 0.051

Fraction of *de novo* deletions depends on animal (P=0.0027). No significant differences in fraction of *de novo* duplications (P=0.018).

De novo deletions are shorter than inherited in all animals

	hog 1	hog 2	hog 3	hog 4	hog 5	hog 6
P-value	$1.0 \cdot 10^{-10}$	$3.8 \cdot 10^{-10}$	$1.6 \cdot 10^{-7}$	$2.7 \cdot 10^{-3}$	$6.7 \cdot 10^{-4}$	$6.2 \cdot 10^{-6}$

Enrichment analysis:

- Common duplications in all 12 pigs are related to the regulation of basic biological processes (metabolic and olfactory receptor activity, as well as G protein-coupled receptor signaling pathway)
- No significant results found for common deletions
- No significant results found for de novo CNVs

