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Abstract 17 

Background: Feature selection (FS) is critical for high dimensional data analysis. Ensemble based 18 

feature selection (EFS) is a commonly used approach to develop FS techniques. Rank aggregation 19 

(RA) is an essential step of EFS where results from multiple models are pooled to estimate feature 20 

importance. However, the literature primarily relies on rule-based methods to perform this step 21 

which may not always provide an optimal feature set. 22 

Method and Results: This study proposes a novel Supervised Rank Aggregation (SRA) approach to 23 

allow RA step to dynamically learn and adapt the model aggregation rules to obtain feature 24 

importance. The approach creates a performance matrix containing feature and model performance 25 

value from all models and prepares a supervised learning model to get the feature importance. 26 

Then, unsupervised learning is performed to select the features using their importance. We evaluate 27 

the performance of the algorithm using simulation studies and implement it into real research 28 

studies, and compare its performance with various existing RA methods. The proposed SRA method 29 

provides better or at par performance in terms of feature selection and predictive performance of 30 

the model compared to existing methods. 31 

Conclusion: SRA method provides an alternative to the existing approaches of RA for EFS. While the 32 

current study is limited to the continuous cross-sectional outcome, other endpoints such as 33 

longitudinal, categorical, and time-to-event medical data could also be used. 34 

Keywords 35 

high dimensional data, supervised rank aggregation, artificial intelligence, machine learning, 36 

ensemble feature selection, random forest 37 
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Introduction 38 

A high dimensional data has challenges associated with model fitting, generalizability [1], and 39 

computation complexity [2,3], which prevents modeling by many classic statistical techniques. 40 

Feature selection is an important component in high dimensional data analysis domains like 41 

genomics [4] and radiomics [5], as it helps reduce the dimensions of the dataset. Literature provides 42 

many techniques to perform feature selection. However, these techniques could be categorized 43 

based on their feature selection (FS) approach (Figure 1). One broad category of FS techniques uses 44 

only expert or domain knowledge to perform feature selection [6,7]. These techniques work in 45 

scenarios with few features without interaction among features and are well known in the research 46 

domain [8]. Another broad category of FS techniques combines expert or domain knowledge with 47 

data [9,10]. FS techniques designed in the Bayesian framework incorporate prior knowledge in the 48 

feature selection process [9].  49 

The third and major category of FS techniques relies on the dataset to perform feature selection and 50 

is referred to as data-based FS techniques in this paper. These techniques are sub-categorized into 51 

Filter, Wrapper, and Embedded FS techniques [11,12]. Filter methods select features based on 52 

internal data structures like association [13] and information gain [14,15]. Wrapper methods 53 

evaluate multiple subsets of features iteratively by building models to get the feature subset, which 54 

achieves the best performance [16–18]. Embedded methods build the model that simultaneously 55 

performs features selection [19–22]. 56 

Literature suggests different approaches to use the FS techniques for FS. These approaches can be 57 

categorized into base, hybrid, and ensemble approaches. In the base approach, a single FS technique 58 

is used. In the hybrid approach, multiple FS techniques are used in a sequence to perform feature 59 

selection [10,23]. Commonly, a filter based FS technique is used as coarse FS followed by a wrapper 60 

or an embedded based FS technique for final FS [23]. Some approaches create a sequence by 61 

combining expert based FS with other FS techniques [10].  62 
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Figure 1: Different feature selection approaches 63 

In an ensemble approach, instead of a single model, multiple models are created from the same 64 

dataset. The performance of features from these models is pooled and ranked based on their 65 

relevance. Finally, the relevant features are selected based on the cut-off of importance. Two 66 

approaches can be used to generate multiple models, namely homogenous ensemble approach and 67 

heterogeneous ensemble approach [24–26]. In a homogenous ensemble approach, multiple 68 

datasets are created from the same data by sub-setting the samples, features, or both followed by 69 

using a single technique to build the model on each of these datasets [25]. In a heterogeneous 70 

ensemble approach, a single dataset is modeled using different techniques to generate multiple 71 

models [26]. An ensemble approach could perform better than single model approaches [27]. 72 

In an ensemble approach, one of the essential steps is to pool together the performance of features 73 

obtained from different models and is referred to as rank aggregation (RA) in this study. The 74 

performance metric used for RA varies across the studies, like model estimates [8,21] and goodness 75 

of fit [8].  Literature provides various techniques to aggregate the feature performance obtained 76 

from different models, but these techniques mainly rely upon a pre-defined rule to aggregate the 77 

performance of features, i.e., rule-based rank aggregation approaches. Commonly used methods to 78 

aggregate the performance of features is to find the mean, median or Robust rank aggregation (RRA)  79 

performance of the feature across all models [28] [29]. However, they cannot learn from the data 80 

about the RA rule dynamically and may even be sensitive towards extreme values like mean values.  81 

In high-dimensional data analysis, the performances of rule-based analysis have been challenged by 82 

machine learning (ML) based approaches like supervised learning. ML-based approaches are 83 

considered effective in the dynamic and complex environment as compared to rule-based 84 

approaches because ML creates dynamic rules by learning and adapting to the existing environment 85 

[30]. In the case of ensemble FS, the data structure is dynamic and varies across datasets, so it may 86 

not always be possible for a predefined rule to give optimal results for all the scenarios [30,31]. Thus, 87 

it is desirable to explore the application of ML in all steps of ensemble FS owing to its dynamic 88 
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learning characteristics. ML approaches like supervised learning are well established in the model 89 

building step [32], but no supervised learning approach is designed for the RA step. 90 

This study proposes a novel perspective to perform RA using the supervised learning approach of the 91 

ML called supervised rank aggregation (SRA). First, SRA creates a performance matrix that contains 92 

the performance of all features in all the models as the input and the performance of each model in 93 

achieving the final data analysis goal as the label. Then, supervised learning is used to find the 94 

relative rank or performance of features based on their potential to help achieve the best 95 

performance in the final data analysis.  96 

SRA based ensemble feature selection (EFS) is highly innovative in many ways. Firstly, perspective is 97 

unique as it pools and ranks features dynamically rather than using fixed rules for EFS. Secondly, it 98 

provides a unique application of supervised learning models as they replace the static rule-based RA 99 

approach with a dynamic rule-based RA approach. Thirdly, it is versatile, which allows its integration 100 

with existing ensemble methods. 101 

This paper provides the “Methodology” section to explain the SRA based EFS. Then, its performance 102 

is compared against existing rank aggregation methods used in EFS for simulations and real studies 103 

in the “Simulation Studies” and “Real Studies” sections. Finally, we summarize and provide future 104 

directions for research in the “Conclusion and Discussion” section. 105 

Methodology 106 

SRA methodology is developed to integrate the supervised learning in the rank aggregation step of 107 

the ensemble learning (Figure 2). A dataset of sample size, �, with given input feature space, �, and 108 

an outcome is fed into the EFS process, where multiple models are created either by creating 109 

multiple bootstrapped datasets from the original dataset (homogenous approach) or by using 110 

multiple modeling techniques (heterogeneous approach). Then a performance matrix is created 111 

from these multiple models by extracting feature performance and model performance. A 112 
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supervised learning algorithm is trained on this performance matrix, and feature importance 113 

obtained from the algorithm is used as the final feature ranking or importance. Finally, the features 114 

are selected based on an importance cut-off obtained from a predefined threshold or an 115 

unsupervised ML algorithm. The proposed methodology is discussed below in more detail. 116 

Figure 2: Graphical representation of SRA methodology based Ensemble feature selection 117 

Generate multiple models 118 

From the original dataset � of feature space �, outcome �, and sample size �, � randomly sampled 119 

datasets are generated by randomly sampling features without repeats ��| 
 � �1, … , ��, 1 � � � � . 120 

All � sample datasets have a sample size of � by sampling with replacement from dataset �. A 121 

model � is created for every � sample dataset using any modeling technique. 122 

�� : �� � �����| 
 � �1, … , ��#�1�  

where, modeling technique used to prepare the 
��  dataset model �� will determine the function �. 123 

In this study, RIDGE regression is used as the modeling technique for building the models. Optimal 124 

hyperparameter values for each model are obtained from 10-fold cross-validation. 125 

Create Performance Matrix 126 

A performance matrix �  is prepared from � models containing �  rows and � � 1 columns. The 127 

matrix contains feature performance, �� as the input features and model performance for study 128 

objective, �� as the outcome or label for all  � models.  129 

� � |���� MP�| | 
 � �1, … , ��,  � �1, … , ��#�2�  

In the current study, model estimates are used as �� metric and predictive performance of a model 130 

on the left out bootstrap samples as ��. Accordingly, �� metric used in the study is inverse of root 131 

mean square error (RMSE). 132 
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Supervised Rank Aggregation 133 

A supervised learning model (SLM) is created from the performance matrix with �� of � features as 134 

predictors and �� as the outcome. 135 

"#�: �� � $����#�3�  

where, machine learning technique used for SLM will determine the function $. Currently, only ML 136 

techniques like penalized regression and decision trees which could provide feature importance, 137 

�
�� in achieving the model performance could be used.  138 

Feature Selection 139 

The importance for each feature is used to select target features ����� . It is assumed that the 140 

features with more importance should be target features as they are more relevant in achieving 141 

higher model performance. In literature, the cut-off value for features is obtained by using a pre-142 

defined threshold [8,21], rule-based threshold estimation [33], or unsupervised learning based 143 

threshold estimation [21]. A predefined threshold may require the tuning step to arrive at an 144 

appropriate cut-off value, which will give optimal results for a given scenario [8,21]. Rule-based 145 

methods may not always provide optimal results [30,31]. Thus, in this study, the K-means based 146 

unsupervised learning technique is used for obtaining the threshold cut-off as it will eliminate the 147 

need for tuning and dynamically adapt to the given scenario. Since clustering will be happening on a 148 

single dimension, hence high dimension limitation of K-mean clustering is avoided. K-means is used 149 

to cluster the features into two groups, and the features in the cluster with a higher mean �
�� 150 

value are selected as final features �����. Pseudo Algorithm summarizes the complete SRA based 151 

ensemble feature selection algorithm. 152 

Pseudo Algorithm: SRA based ensemble feature selection 

Input:     

                

                

                

Output:  

Feature data X (p × n)  

Target feature Y (1 × n) 

Number of sample datasets � 

Performance matrix �= �&��'�� 

Final Feature set ����� 
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Begin: 

# Step I: Generate multiple models 

for i=1 to k 

     Generate �� random features from � 

     Generate samples ()� , *�  �  +� 
�����, 

     Build embedded model ��  (like RIDGE) from ()� , *�, 

end for 

 

# Step II: Prepare Performance Matrix 

for i=1 to k 

     Compute feature performance estimate ���   of the model 

     Compute model performance estimate ���   of the model 

    Add ���� , ��� � to � 

end for 

 

# Step III: Supervised Rank Aggregation 

Build a supervised learning model (like LASSO, RIDGE, Random Forest), SLM from � 

Compute feature importance estimate (like feature coefficient, feature importance score) �
�� 

from SLM model for � 

 

# Step IV: Feature Selection 

Generate two clusters �-�, -�� from �
�� of � features using unsupervised learning like K-means 

Compute mean �
��  of -� �-� �  .�-�� 

Compute mean �
��  of -� �-� �  .�-�� 

if �-�= MAXIMUM(�-�, �-�) 

     Add -� features to ����� to get final feature selection 

else if �-� = MAXIMUM(�-�, �-�) 

     Add -� features to ����� to get final feature selection 

else 

    Add � features to ����� to get final feature selection 

End 

Simulation Studies 153 

We perform simulation studies to evaluate the proposed RA method and compare its performance 154 

with multiple other RA methods for EFS. The study generates high-dimensional feature space for 155 

marginal models using multivariate normal distributions. The study uses regression model 156 

� �  /� �  ∑ /�1�
�
��� � 2 to provide a continuous outcome variable of simulated data with sample 157 

size, � for marginal models. / represents the effect of different features and intercept term on the 158 

outcome,  3~5�0, 7��  is the normally distributed error term and 1�  ~5�0, 1�  are normally 159 

distributed input features, �. Multi-collinearity is added between features using the covariance 160 

matrix as given below: 161 
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899
9: 1�1� .. .1��1� .

1�1�� .. .1��1�� .   . 1�1�. .. 1��1�.   .1�1�   . .   .1�1��   . . .. 1�1� <==
=> � ?1 .. .5 5

5   .5   .1   .   . 0. .. 0. .0 . .   .0   .   . .. 1A 

Multiple scenarios are simulated by changing �, �, /, the number of target features, and � (Table 1). 162 

Only true features are assigned a non-zero / value. We prepare homogenous ensemble models for 163 

feature selection. The dataset for each model is generated by randomly sampling two to � features 164 

from � feature space and sub-setting � samples from the original dataset with replacement. RIDGE is 165 

used to build models for each dataset. A penalized effect size of each feature obtained from the 166 

RIDGE models is scaled using the absolute maximum value, which is used as a feature performance 167 

metric. 168 

Implementation of SRA is shown using three different supervised learning algorithms, namely LASSO 169 

(SRA-Lasso), RIDGE (SRA-Ridge), random forest (SRA-RF). While LASSO and RIDGE perform 170 

supervised learning using a linear combination of features, random forest performs supervised 171 

learning using a non-linear combination of features. A supervised learning model in each SRA is 172 

prepared using optimized hyperparameter values. 173 

SRA performance is compared with existing rule-based RA methods, namely, mean based RA 174 

(MeRA), maximum based RA (MaRA), minimum based RA (MiRA), median based RA (MedRA), 175 

coefficient of variation based RA (CVRA), standard deviation based RA (SDRA), robust rank 176 

aggregation (RRA), t-test based RA (tRA), and Wilcoxon signed-rank test based RA (WRA). R 4.0.3 is 177 

used for the analysis. The study has used some inbuilt packages in statistical language R for the 178 

analysis like glmnet package [34] for LASSO and RIDGE, randomForest package [35] for random 179 

forest, and RobustRankAggreg package [29] for RRA. 180 

The different RA methods are evaluated for their ability to select target features, discriminate 181 

between target and noise features, and predictive performance of the models built using selected 182 

features. We use the F1 score for feature discrimination ability evaluation and inverse RMSE for the 183 
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test data for the predictive performance evaluation. RIDGE is used to build the final model from the 184 

selected features for predictive performance evaluation. Ten trials are performed for each scenario. 185 

Table 2 results suggest that all methods can select some target features under all scenarios, but SRA-186 

Ridge consistently outperformed rule-based RA methods. SRA-Ridge selected almost all the target 187 

features in all scenarios. The performance of the other two SRA methods is at par with existing RA 188 

methods. Further, the results suggest that SRA-Ridge has a better or at par feature discriminative 189 

ability than other methods. Thus, SRA-Ridge not only selects target features but is also good in 190 

rejecting noise features as compared to other methods. The results suggest that SRA could be a good 191 

candidate to select target features. 192 

Further, SRA-Ridge based selected features can build good predictive models and consistently 193 

outperformed rule-based RA methods (Table 2). These findings suggest that the SRA may provide 194 

better or at par prediction performance than existing methods. Further, SRA could enhance the 195 

performance of ensemble-based approaches in high-dimensional settings. 196 

Real Studies 197 

Three real studies are analyzed to compare the performance of SRA and existing RA methods. Study I 198 

is Community Health Status Indicators (CHSI) study that collected US county data (n=3141) 199 

containing 578 features to understand non-communicable diseases [36]. Study II is National Social 200 

Life, Health and Aging Project (NSHAP) study that collected aged Americans data (n=4377) 201 

containing 1470 features to understand their health and well-being [37]. Study III is the DNA 202 

methylation data (n=27578) containing 108 samples to understand its relationship with human age 203 

[38,39]. 204 

Table 3 shows the final cleaned dataset for these three studies used for analysis. Features and 205 

samples are filtered to remove highly correlated features, non-continuous features, missing values, 206 

and very low standard deviation. The final cleaned dataset is randomly split into training and test 207 
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dataset. The test dataset is used to evaluate the predictive performance of the features selected by 208 

different RA methods. The study uses inverse RMSE as the predictive performance metric. The mean 209 

performance of ten trials is used for comparison between RA methods. In the cases of Study I and 210 

Study II, 100 ensemble models are created, while in Study III, 1000 ensemble models are created.  211 

The results from Table 4 suggest that SRA methods provided better or at par predictive performance 212 

than existing RA methods. The better performance of the SRA method suggests that it may be more 213 

reliable than existing RA methods in identifying the target features. Further, unlike the simulated 214 

data results, different SRA methods have shown different performances. In the case of Study I and 215 

Study II, SRA-Ridge has the best predictive performance, but in Study III, SRA-Lasso has the best 216 

predictive performance, which suggests that SRA methods performance may change with dataset 217 

and ensemble models. In general, the variation in performance of feature selection techniques with 218 

dataset has been reported in the literature and could be attributed to data characteristics [40].  219 

In the current study, Study III data is also used to compare the performance of SRA based selected 220 

methylated features with state-of-art literature based selected features [41,42]. SRA-Lasso is used to 221 

obtain the target features. The complete dataset is used for the FS step rather than the training 222 

data. SRA-Lasso identified 484 methylation sites compared to 353 methylation sites identified by the 223 

literature, but only ten methylation sites are shared between the two approaches (Supplementary 224 

File 1). The selected methylation sites from the two approaches are compared for their predictive 225 

performance on the test data. Accordingly, the Study III dataset is split into training (80%) and test 226 

(20%) data. RIDGE model is prepared using training data followed by predictive performance 227 

measurement on test data. It is found that SRA-Lasso based selected features provided a marginally 228 

better predictive performance (RMSE-1(95% CI): 0.06 (0.05-0.07)) compared to literature 229 

recommended selected features (RMSE-1(95% CI): 0.05 (0.04-0.05)).  230 

Further, we identified the differentially expressed genes associated with selected methylated sites 231 

using BioMethyl package [43]. SRA-Lasso based selected methylated sites are linked with 288 genes, 232 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.21.481356doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481356


12 

 

but literature based selected methylated sites are linked with only 136 genes (Supplementary File 2). 233 

Only ten genes, namely SFRP1, STRA6, BNC1, CSPG5, DCHS1, DIRAS3, TCF15, ERG, PIPOX, and 234 

MCAM, are shared between the two approaches. Literature also provides a database, GenAge, of 235 

307 genes commonly associated with age [44]. Among the 136 genes linked with literature-based 236 

methylation sites, only 1 out of 308 genes is found (Supplementary File 3). However, among the 288 237 

genes linked with SRA-Lasso based methylation sites, 9 out of 308 genes are found (Supplementary 238 

File 3).  Thus, SRA-Lasso may be relevant in identifying target features that have both biological 239 

importance and good predictive performance. 240 

Conclusion and Discussion 241 

This paper proposes SRA, an innovative approach, to perform rank aggregation in ensemble models 242 

for feature selection. The approach allows dynamic learning of feature performance pooling 243 

strategy, which current rule-based rank aggregation methods do not perform. The approach is 244 

flexible and could be incorporated into any ensemble technique. The SRA could identify target 245 

features while retaining very few noise features compared to other methods. The simulated data 246 

studies showed that SRA outperforms existing methods in feature selection and prediction 247 

performance. Similar performance in real datasets also demonstrates the practical relevance of SRA. 248 

The proposed method has certain limitations. The scope of the current study is limited to concept 249 

testing. Consequently, the robustness of the approach on different data types and modeling 250 

techniques could be the focus of future research. The ensemble model used in the study assumes a 251 

linear combination of features. Thus, future research could study SRA for algorithms designed to 252 

explore the non-linear combinations of features. 253 

Key Points 254 

• Supervised Rank Aggregation (SRA) methods are better than rule-based rank aggregation 255 

methods for ensemble-based feature selection (EFS). 256 
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• SRA Ridge could give much better discrimination between true and noise features as well as 257 

predictive performance than rule-based rank aggregation methods 258 

• SRA could be useful in detecting the genomic features like methylation sites which could 259 

have biological relevance 260 
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Table 1: Description of the scenarios of simulation studies 1 

Scenario � (Non-Zero coefficients) � 

Sample Size 

�
 

� 

Train (�) Test 

A � ��| 
 � �1, … ,10��  �  �0.9,… , 0.9� 75 100 500 0.25 300 

B � ��| 
 � �1, … ,10��  �  �0.5,… , 0.5� 100 100 500 0.25 100 

C � ��| 
 � �1, … ,15��  � �0.4,�0.8, 0.4, �0.8, … , 0.4� 175 275 500 0.25 100 

D � ��| 
 � �1, … ,15��  � �0.4,�0.8, 0.4, �0.8, … , 0.4� 75 275 500 0.25 100 

E � ��| 
 � �1, … ,15��  � �0.4,�0.8, 0.4, �0.8, … , 0.4� 75 225 500 0.25 200 

F � ��| 
 � �1, … ,20�� �  �0.4, �0.8, 0.4, �0.8, … , �0.8� 125 225 500 0.25 200 

   2 
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Table 1: Comparison of model performance between SRA methods and Existing methods under six 1 

scenarios in terms of target feature selection, feature discrimination ability (F1 Score) and outcome 2 

prediction (1/RMSE) 3 

RA technique 

Scenarios 

A B C D E F 

Target Features (%) [µ(95%CI)] 

E
x
is
t
in
g
 

CVRA 
100 

(100-100) 

100 

(100-100) 

46 

(45-47) 

46 

(45-47) 

47 

(47-47) 

51 

(48-53) 

MARA 
100 

(100-100) 

100 

(100-100) 

87 

(81-93) 

97 

(95-99) 

85 

(78-93) 

66 

(56-76) 

MeRA 
100 

(100-100) 

100 

(100-100) 

47 

(47-47) 

47 

(47-47) 

47 

(47-47) 

53 

(51-55) 

MedRA 
100 

(100-100) 

100 

(100-100) 

47 

(47-47) 

47 

(46-49) 

47 

(47-47) 

53 

(50-56) 

MIRA 
62 

(48-76) 

94 

(89-99) 

95 

(91-98) 

77 

(72-82) 

85 

(82-89) 

88 

(86-89) 

RRA 
99 

(97-100) 

99 

(97-101) 

47 

(47-47) 

48 

(46-50) 

47 

(46-49) 

52 

(50-54) 

SDRA 
78 

(67-89) 

71 

(67-75) 

34 

(29-39) 

40 

(35-45) 

35 

(27-42) 

39 

(32-46) 

tRA 
100 

(100-100) 

100 

(100-100) 

46 

(45-47) 

45 

(44-47) 

47 

(47-47) 

51 

(48-53) 

WRA 
100 

(100-100) 

100 

(100-100) 

49 

(45-53) 

53 

(53-53) 

53 

(53-53) 

37 

(34-40) 

S
R
A
 

Lasso 
92 

(87-97) 

37 

(18-56) 

41 

(37-45) 

58 

(51-65) 

63 

(57-69) 

46 

(38-54) 

RF 
98 

(95-100) 

53 

(43-63) 

63 

(54-73) 

67 

(57-76) 

65 

(56-75) 

61 

(53-69) 

Ridge 
100 

(100-100) 

99 

(97-100) 

95 

(89-100) 

95 

(92-99) 

100 

(100-100) 

92 

(88-96) 

RA technique F1 Score[µ(95%CI)] 

E
x
is
t
in
g
 

CVRA 
1.00 

(1.00-1.00) 

0.93 

(0.89-0.97) 

0.63 

(0.62-0.64) 

0.63 

(0.62-0.64) 

0.64 

(0.64-0.64) 

0.67 

(0.65-0.69) 

MARA 
0.58 

(0.55-0.61) 

0.70 

(0.68-0.72) 

0.60 

(0.55-0.64) 

0.83 

(0.8-0.86) 

0.65 

(0.61-0.69) 

0.44 

(0.39-0.49) 

MeRA 
0.83 

(0.8-0.86) 

0.81 

(0.80-0.82) 

0.64 

(0.64-0.64) 

0.64 

(0.64-0.64) 

0.64 

(0.64-0.64) 

0.69 

(0.67-0.71) 

MedRA 
0.85 

(0.82-0.87) 

0.81 

(0.80-0.82) 

0.64 

(0.64-0.64) 

0.64 

(0.63-0.65) 

0.64 

(0.64-0.64) 

0.69 

(0.67-0.71) 

MIRA 
0.41 

(0.33-0.49) 

0.60 

(0.53-0.67) 

0.79 

(0.73-0.85) 

0.75 

(0.72-0.78) 

0.70 

(0.67-0.73) 

0.76 

(0.74-0.79) 

RRA 
0.90 

(0.87-0.93) 

0.82 

(0.80-0.83) 

0.64 

(0.64-0.64) 

0.65 

(0.63-0.66) 

0.64 

(0.63-0.65) 

0.68 

(0.67-0.7) 

SDRA 
0.30 

(0.27-0.32) 

0.22 

(0.20-0.24) 

0.07 

(0.06-0.07) 

0.16 

(0.15-0.18) 

0.16 

(0.14-0.17) 

0.12 

(0.10-0.14) 

tRA 
1.00 

(1.00-1.00) 

0.92 

(0.88-0.96) 

0.63 

(0.62-0.64) 

0.62 

(0.61-0.64) 

0.64 

(0.64-0.64) 

0.67 

(0.65-0.69) 

WRA 
0.40 

(0.38-0.42) 

0.33 

(0.32-0.34) 

0.14 

(0.13-0.16) 

0.29 

(0.27-0.3) 

0.30 

(0.28-0.32) 

0.18 

(0.17-0.2) 

S R A Lasso 0.96 0.33 0.58 0.73 0.77 0.62 
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(0.93-0.98) (0.16-0.50) (0.53-0.62) (0.67-0.79) (0.72-0.81) (0.55-0.7) 

RF 
0.75 

(0.69-0.81) 

0.29 

(0.24-0.33) 

0.64 

(0.57-0.71) 

0.73 

(0.66-0.8) 

0.77 

(0.71-0.83) 

0.70 

(0.64-0.76) 

Ridge 
1.00 

(1.00-1.00) 

0.99 

(0.98-1.00) 

0.97 

(0.94-1.00) 

0.98 

(0.96-0.99) 

1.00 

(1.00-1.00) 

0.95 

(0.93-0.98) 

RA technique Predictive Performance (1/RMSE) [µ(95%CI)] 

E
x
is
t
in
g
 

CVRA 
3.50 

(3.29-3.71) 

3.82 

(2.90-4.75) 

0.81 

(0.79-0.84) 

0.84 

(0.81-0.86) 

0.83 

(0.80-0.85) 

0.75 

(0.72-0.77) 

MARA 
2.67 

(2.43-2.90) 

3.65 

(2.77-4.54) 

1.73 

(1.43-2.03) 

2.42 

(1.97-2.86) 

1.43 

(1.01-1.85) 

0.58 

(0.51-0.65) 

MeRA 
2.94 

(2.56-3.31) 

3.67 

(2.83-4.51) 

0.82 

(0.80-0.84) 

0.84 

(0.82-0.87) 

0.83 

(0.80-0.85) 

0.76 

(0.73-0.79) 

MedRA 
2.96 

(2.55-3.36) 

3.67 

(2.83-4.51) 

0.82 

(0.80-0.84) 

0.85 

(0.82-0.89) 

0.83 

(0.80-0.85) 

0.76 

(0.73-0.79) 

MIRA 
0.80 

(0.27-1.34) 

2.58 

(2.00-3.17) 

2.45 

(1.97-2.93) 

1.45 

(1.29-1.61) 

1.74 

(1.57-1.91) 

1.31 

(1.25-1.37) 

RRA 
2.92 

(2.42-3.42) 

3.54 

(2.61-4.46) 

0.82 

(0.80-0.84) 

0.87 

(0.83-0.91) 

0.84 

(0.81-0.87) 

0.75 

(0.73-0.77) 

SDRA 
1.10 

(0.53-1.68) 

1.03 

(0.96-1.10) 

0.68 

(0.66-0.7) 

0.77 

(0.74-0.8) 

0.71 

(0.66-0.76) 

0.53 

(0.47-0.58) 

tRA 
3.50 

(3.29-3.71) 

3.79 

(2.91-4.67) 

0.81 

(0.79-0.83) 

0.84 

(0.81-0.86) 

0.83 

(0.80-0.85) 

0.75 

(0.72-0.77) 

WRA 
2.18 

(1.96-2.39) 

2.62 

(2.39-2.85) 

0.45 

(0.44-0.45) 

0.47 

(0.45-0.48) 

0.46 

(0.45-0.46) 

0.37 

(0.36-0.38) 

S
R
A
 

Lasso 
2.17 

(1.32-3.02) 

0.77 

(0.51-1.03) 

0.79 

(0.76-0.82) 

1.00 

(0.85-1.16) 

1.09 

(0.96-1.21) 

0.72 

(0.66-0.79) 

RF 
2.62 

(2.07-3.17) 

0.88 

(0.77-0.99) 

0.70 

(0.62-0.78) 

0.87 

(0.46-1.27) 

0.73 

(0.55-0.9) 

0.55 

(0.50-0.59) 

Ridge 
3.50 

(3.29-3.71) 

3.83 

(2.91-4.75) 

2.58 

(2.07-3.08) 

2.65 

(2.02-3.28) 

2.98 

(2.51-3.44) 

1.87 

(1.46-2.28) 
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Table 1: Summary of the real datasets 1 

Real 

Studies 

Marginal 

Features (p) 
Outcome feature 

Sample size (n) k 

Total Train Test  

Study I 45 Height 1035 207 828 100 

Study II 74 Number of unhealthy days 177 141 36 100 

Study III 2289 Age 108 86 22 1000 

  2 
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Table 1: Comparison of SRA methods with Existing methods for three real studies in terms of outcome 1 

prediction (1/RMSE) 2 

RA technique 

Study 

I II III 

Predictive Performance (1/RMSE) [µ(95%CI)] 

E
x
is
t
in
g
 

CVRA 1.08(1.07-1.1) 1.28(1.22-1.35) 2.36(2.15-2.56) 

MARA 1.14(1.12-1.16) 1.25(1.2-1.31) 2.14(1.95-2.34) 

MeRA 3.14(2.96-3.31) 1.28(1.23-1.33) 2.35(2.17-2.54) 

MedRA 3.16(2.98-3.35) 1.28(1.23-1.33) 2.38(2.19-2.57) 

MIRA 2.96(2.76-3.17) 1.22(1.16-1.27) 1.76(1.67-1.86) 

RRA 3.13(2.96-3.3) 1.28(1.19-1.36) 2.39(2.18-2.61) 

SDRA 1.06(1.03-1.09) 1.16(1.09-1.23) 1.05(1.02-1.09) 

tRA 1.08(1.07-1.1) 1.28(1.2-1.36) 2.35(2.15-2.55) 

WRA 1.13(1.11-1.14) 1.25(1.19-1.3) 2.05(1.87-2.23) 

S
R
A
 

Lasso 1(0.99-1.01) 1.23(1.14-1.31) 2.72(2.25-3.19) 

RF 2.51(1.86-3.16) 1.23(1.14-1.32) 1.88(1.75-2) 

Ridge 3.21(3.03-3.39) 1.28(1.22-1.34) 2.30(2.12-2.47) 
 3 
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