{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Wczytywanie danych"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"familyID | individualID | IDFather | IDMother | sex | age | ethnicity | alcoholDependence | AgeOnset | MaxDinks | packsDay |
\n",
"\n",
"\t10084 | 10000089 | 10000526 | 10000031 | F | 30 | 6 | 5 | 16 | 24 | 17.00 |
\n",
"\t10084 | 10000758 | 10000526 | 10000031 | F | 31 | 6 | 5 | 30 | 12 | 16.00 |
\n",
"\t10084 | 10001094 | 0 | 0 | M | 0 | 0 | 0 | 0 | -9 | -9.00 |
\n",
"\t10084 | 10000133 | 10001094 | 10000758 | M | 18 | 6 | 3 | 0 | 18 | 0.45 |
\n",
"\t10084 | 10001039 | 10000526 | 10000031 | M | 28 | 6 | 5 | 16 | 40 | 0.00 |
\n",
"\t10084 | 10000194 | 10000526 | 10000031 | F | 24 | 6 | 3 | 0 | 20 | 8.00 |
\n",
"\t10084 | 10000526 | 0 | 0 | M | 60 | 6 | 5 | 38 | 24 | 42.00 |
\n",
"\t10084 | 10000031 | 0 | 0 | F | 60 | 6 | 3 | 0 | 7 | 58.50 |
\n",
"\t10130 | 10001565 | 10001436 | 10001364 | F | 38 | 6 | 5 | 18 | 75 | 30.00 |
\n",
"\t10130 | 10000919 | 10001436 | 10001364 | M | 40 | 6 | 5 | 33 | 48 | 0.00 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|lllllllllll}\n",
" familyID & individualID & IDFather & IDMother & sex & age & ethnicity & alcoholDependence & AgeOnset & MaxDinks & packsDay\\\\\n",
"\\hline\n",
"\t 10084 & 10000089 & 10000526 & 10000031 & F & 30 & 6 & 5 & 16 & 24 & 17.00 \\\\\n",
"\t 10084 & 10000758 & 10000526 & 10000031 & F & 31 & 6 & 5 & 30 & 12 & 16.00 \\\\\n",
"\t 10084 & 10001094 & 0 & 0 & M & 0 & 0 & 0 & 0 & -9 & -9.00 \\\\\n",
"\t 10084 & 10000133 & 10001094 & 10000758 & M & 18 & 6 & 3 & 0 & 18 & 0.45 \\\\\n",
"\t 10084 & 10001039 & 10000526 & 10000031 & M & 28 & 6 & 5 & 16 & 40 & 0.00 \\\\\n",
"\t 10084 & 10000194 & 10000526 & 10000031 & F & 24 & 6 & 3 & 0 & 20 & 8.00 \\\\\n",
"\t 10084 & 10000526 & 0 & 0 & M & 60 & 6 & 5 & 38 & 24 & 42.00 \\\\\n",
"\t 10084 & 10000031 & 0 & 0 & F & 60 & 6 & 3 & 0 & 7 & 58.50 \\\\\n",
"\t 10130 & 10001565 & 10001436 & 10001364 & F & 38 & 6 & 5 & 18 & 75 & 30.00 \\\\\n",
"\t 10130 & 10000919 & 10001436 & 10001364 & M & 40 & 6 & 5 & 33 & 48 & 0.00 \\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"| familyID | individualID | IDFather | IDMother | sex | age | ethnicity | alcoholDependence | AgeOnset | MaxDinks | packsDay |\n",
"|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 10084 | 10000089 | 10000526 | 10000031 | F | 30 | 6 | 5 | 16 | 24 | 17.00 |\n",
"| 10084 | 10000758 | 10000526 | 10000031 | F | 31 | 6 | 5 | 30 | 12 | 16.00 |\n",
"| 10084 | 10001094 | 0 | 0 | M | 0 | 0 | 0 | 0 | -9 | -9.00 |\n",
"| 10084 | 10000133 | 10001094 | 10000758 | M | 18 | 6 | 3 | 0 | 18 | 0.45 |\n",
"| 10084 | 10001039 | 10000526 | 10000031 | M | 28 | 6 | 5 | 16 | 40 | 0.00 |\n",
"| 10084 | 10000194 | 10000526 | 10000031 | F | 24 | 6 | 3 | 0 | 20 | 8.00 |\n",
"| 10084 | 10000526 | 0 | 0 | M | 60 | 6 | 5 | 38 | 24 | 42.00 |\n",
"| 10084 | 10000031 | 0 | 0 | F | 60 | 6 | 3 | 0 | 7 | 58.50 |\n",
"| 10130 | 10001565 | 10001436 | 10001364 | F | 38 | 6 | 5 | 18 | 75 | 30.00 |\n",
"| 10130 | 10000919 | 10001436 | 10001364 | M | 40 | 6 | 5 | 33 | 48 | 0.00 |\n",
"\n"
],
"text/plain": [
" familyID individualID IDFather IDMother sex age ethnicity alcoholDependence\n",
"1 10084 10000089 10000526 10000031 F 30 6 5 \n",
"2 10084 10000758 10000526 10000031 F 31 6 5 \n",
"3 10084 10001094 0 0 M 0 0 0 \n",
"4 10084 10000133 10001094 10000758 M 18 6 3 \n",
"5 10084 10001039 10000526 10000031 M 28 6 5 \n",
"6 10084 10000194 10000526 10000031 F 24 6 3 \n",
"7 10084 10000526 0 0 M 60 6 5 \n",
"8 10084 10000031 0 0 F 60 6 3 \n",
"9 10130 10001565 10001436 10001364 F 38 6 5 \n",
"10 10130 10000919 10001436 10001364 M 40 6 5 \n",
" AgeOnset MaxDinks packsDay\n",
"1 16 24 17.00 \n",
"2 30 12 16.00 \n",
"3 0 -9 -9.00 \n",
"4 0 18 0.45 \n",
"5 16 40 0.00 \n",
"6 0 20 8.00 \n",
"7 38 24 42.00 \n",
"8 0 7 58.50 \n",
"9 18 75 30.00 \n",
"10 33 48 0.00 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"gaw = read.table('http://theta.edu.pl/wp-content/uploads/2019/12/gaw.csv', header = TRUE, sep = ';', dec = ',')\n",
"head(gaw, 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Eksploracja danych"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
" familyID individualID IDFather IDMother sex \n",
" Min. :10001 Min. :1e+07 Min. : 0 Min. : 0 F:788 \n",
" 1st Qu.:10033 1st Qu.:1e+07 1st Qu.: 0 1st Qu.: 0 M:826 \n",
" Median :10068 Median :1e+07 Median :10000446 Median :10000403 \n",
" Mean :10070 Mean :1e+07 Mean : 6871685 Mean : 6871658 \n",
" 3rd Qu.:10106 3rd Qu.:1e+07 3rd Qu.:10001052 3rd Qu.:10001005 \n",
" Max. :10143 Max. :1e+07 Max. :10001609 Max. :10001607 \n",
" age ethnicity alcoholDependence AgeOnset \n",
" Min. : 0.00 Min. :0.000 Min. :0.000 Min. : 0.000 \n",
" 1st Qu.:23.00 1st Qu.:4.000 1st Qu.:1.000 1st Qu.: 0.000 \n",
" Median :34.00 Median :6.000 Median :3.000 Median : 0.000 \n",
" Mean :34.48 Mean :4.922 Mean :3.006 Mean : 8.769 \n",
" 3rd Qu.:47.00 3rd Qu.:6.000 3rd Qu.:5.000 3rd Qu.:18.000 \n",
" Max. :91.00 Max. :8.000 Max. :5.000 Max. :66.000 \n",
" MaxDinks packsDay \n",
" Min. :-9.00 Min. : -9.000 \n",
" 1st Qu.: 3.00 1st Qu.: 0.000 \n",
" Median :10.00 Median : 1.587 \n",
" Mean :13.71 Mean : 11.674 \n",
" 3rd Qu.:22.75 3rd Qu.: 18.000 \n",
" Max. :96.00 Max. :193.000 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"summary(gaw)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"FALSE TRUE \n",
" 226 1388 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"table(gaw$age != 0)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
" familyID individualID IDFather IDMother sex \n",
" Min. :10001 Min. :1e+07 Min. : 0 Min. : 0 F:718 \n",
" 1st Qu.:10033 1st Qu.:1e+07 1st Qu.:10000090 1st Qu.:10000073 M:663 \n",
" Median :10069 Median :1e+07 Median :10000620 Median :10000527 \n",
" Mean :10070 Mean :1e+07 Mean : 7900715 Mean : 7900683 \n",
" 3rd Qu.:10106 3rd Qu.:1e+07 3rd Qu.:10001122 3rd Qu.:10001083 \n",
" Max. :10143 Max. :1e+07 Max. :10001609 Max. :10001607 \n",
" age ethnicity alcoholDependence AgeOnset \n",
" Min. :17.00 Min. :0.000 Min. :1.000 Min. : 0.00 \n",
" 1st Qu.:29.00 1st Qu.:6.000 1st Qu.:3.000 1st Qu.: 0.00 \n",
" Median :37.00 Median :6.000 Median :3.000 Median : 0.00 \n",
" Mean :40.04 Mean :5.728 Mean :3.495 Mean :10.17 \n",
" 3rd Qu.:51.00 3rd Qu.:6.000 3rd Qu.:5.000 3rd Qu.:19.00 \n",
" Max. :91.00 Max. :8.000 Max. :5.000 Max. :66.00 \n",
" MaxDinks packsDay \n",
" Min. : 0.00 Min. : 0.00 \n",
" 1st Qu.: 6.00 1st Qu.: 0.00 \n",
" Median :12.00 Median : 5.25 \n",
" Mean :17.43 Mean : 15.16 \n",
" 3rd Qu.:24.00 3rd Qu.: 21.00 \n",
" Max. :96.00 Max. :193.00 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"gaw = gaw[gaw$age != 0, ]\n",
"gaw = gaw[gaw$packsDay != -9, ]\n",
"summary(gaw)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"#install.packages(\"psych\")\n",
"library(psych)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" | vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se |
\n",
"\n",
"\tfamilyID | 1 | 1381 | 1.007027e+04 | 4.193776e+01 | 10069.00 | 1.006995e+04 | 54.85620 | 10001 | 10143 | 142 | 0.05270503 | -1.26045317 | 1.128518e+00 |
\n",
"\tindividualID | 2 | 1381 | 1.000081e+07 | 4.660408e+02 | 10000814.00 | 1.000081e+07 | 596.00520 | 10000001 | 10001614 | 1613 | -0.01373681 | -1.18923885 | 1.254085e+01 |
\n",
"\tIDFather | 3 | 1381 | 7.900715e+06 | 4.074838e+06 | 10000620.00 | 8.625049e+06 | 765.02160 | 0 | 10001609 | 10001609 | -1.42249007 | 0.02349663 | 1.096512e+05 |
\n",
"\tIDMother | 4 | 1381 | 7.900683e+06 | 4.074821e+06 | 10000527.00 | 8.625010e+06 | 735.36960 | 0 | 10001607 | 10001607 | -1.42249006 | 0.02349663 | 1.096508e+05 |
\n",
"\tsex* | 5 | 1381 | 1.480087e+00 | 4.997843e-01 | 1.00 | 1.475113e+00 | 0.00000 | 1 | 2 | 1 | 0.07962910 | -1.99510231 | 1.344887e-02 |
\n",
"\tage | 6 | 1381 | 4.004055e+01 | 1.519329e+01 | 37.00 | 3.897919e+01 | 14.82600 | 17 | 91 | 74 | 0.63399149 | -0.39609744 | 4.088415e-01 |
\n",
"\tethnicity | 7 | 1381 | 5.727734e+00 | 9.346889e-01 | 6.00 | 5.860633e+00 | 0.00000 | 0 | 8 | 8 | -2.11702045 | 7.05280083 | 2.515187e-02 |
\n",
"\talcoholDependence | 8 | 1381 | 3.494569e+00 | 1.564833e+00 | 3.00 | 3.618100e+00 | 2.96520 | 1 | 5 | 4 | -0.44632263 | -1.25963346 | 4.210863e-02 |
\n",
"\tAgeOnset | 9 | 1381 | 1.017161e+01 | 1.254696e+01 | 0.00 | 8.334842e+00 | 0.00000 | 0 | 66 | 66 | 0.98619854 | 0.50232360 | 3.376306e-01 |
\n",
"\tMaxDinks | 10 | 1381 | 1.743012e+01 | 1.605756e+01 | 12.00 | 1.474389e+01 | 11.86080 | 0 | 96 | 96 | 1.89569945 | 4.72287697 | 4.320985e-01 |
\n",
"\tpacksDay | 11 | 1381 | 1.516225e+01 | 2.301009e+01 | 5.25 | 1.018169e+01 | 7.78365 | 0 | 193 | 193 | 2.60677859 | 9.69008086 | 6.191864e-01 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|lllllllllllll}\n",
" & vars & n & mean & sd & median & trimmed & mad & min & max & range & skew & kurtosis & se\\\\\n",
"\\hline\n",
"\tfamilyID & 1 & 1381 & 1.007027e+04 & 4.193776e+01 & 10069.00 & 1.006995e+04 & 54.85620 & 10001 & 10143 & 142 & 0.05270503 & -1.26045317 & 1.128518e+00\\\\\n",
"\tindividualID & 2 & 1381 & 1.000081e+07 & 4.660408e+02 & 10000814.00 & 1.000081e+07 & 596.00520 & 10000001 & 10001614 & 1613 & -0.01373681 & -1.18923885 & 1.254085e+01\\\\\n",
"\tIDFather & 3 & 1381 & 7.900715e+06 & 4.074838e+06 & 10000620.00 & 8.625049e+06 & 765.02160 & 0 & 10001609 & 10001609 & -1.42249007 & 0.02349663 & 1.096512e+05\\\\\n",
"\tIDMother & 4 & 1381 & 7.900683e+06 & 4.074821e+06 & 10000527.00 & 8.625010e+06 & 735.36960 & 0 & 10001607 & 10001607 & -1.42249006 & 0.02349663 & 1.096508e+05\\\\\n",
"\tsex* & 5 & 1381 & 1.480087e+00 & 4.997843e-01 & 1.00 & 1.475113e+00 & 0.00000 & 1 & 2 & 1 & 0.07962910 & -1.99510231 & 1.344887e-02\\\\\n",
"\tage & 6 & 1381 & 4.004055e+01 & 1.519329e+01 & 37.00 & 3.897919e+01 & 14.82600 & 17 & 91 & 74 & 0.63399149 & -0.39609744 & 4.088415e-01\\\\\n",
"\tethnicity & 7 & 1381 & 5.727734e+00 & 9.346889e-01 & 6.00 & 5.860633e+00 & 0.00000 & 0 & 8 & 8 & -2.11702045 & 7.05280083 & 2.515187e-02\\\\\n",
"\talcoholDependence & 8 & 1381 & 3.494569e+00 & 1.564833e+00 & 3.00 & 3.618100e+00 & 2.96520 & 1 & 5 & 4 & -0.44632263 & -1.25963346 & 4.210863e-02\\\\\n",
"\tAgeOnset & 9 & 1381 & 1.017161e+01 & 1.254696e+01 & 0.00 & 8.334842e+00 & 0.00000 & 0 & 66 & 66 & 0.98619854 & 0.50232360 & 3.376306e-01\\\\\n",
"\tMaxDinks & 10 & 1381 & 1.743012e+01 & 1.605756e+01 & 12.00 & 1.474389e+01 & 11.86080 & 0 & 96 & 96 & 1.89569945 & 4.72287697 & 4.320985e-01\\\\\n",
"\tpacksDay & 11 & 1381 & 1.516225e+01 & 2.301009e+01 & 5.25 & 1.018169e+01 & 7.78365 & 0 & 193 & 193 & 2.60677859 & 9.69008086 & 6.191864e-01\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"| | vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| familyID | 1 | 1381 | 1.007027e+04 | 4.193776e+01 | 10069.00 | 1.006995e+04 | 54.85620 | 10001 | 10143 | 142 | 0.05270503 | -1.26045317 | 1.128518e+00 |\n",
"| individualID | 2 | 1381 | 1.000081e+07 | 4.660408e+02 | 10000814.00 | 1.000081e+07 | 596.00520 | 10000001 | 10001614 | 1613 | -0.01373681 | -1.18923885 | 1.254085e+01 |\n",
"| IDFather | 3 | 1381 | 7.900715e+06 | 4.074838e+06 | 10000620.00 | 8.625049e+06 | 765.02160 | 0 | 10001609 | 10001609 | -1.42249007 | 0.02349663 | 1.096512e+05 |\n",
"| IDMother | 4 | 1381 | 7.900683e+06 | 4.074821e+06 | 10000527.00 | 8.625010e+06 | 735.36960 | 0 | 10001607 | 10001607 | -1.42249006 | 0.02349663 | 1.096508e+05 |\n",
"| sex* | 5 | 1381 | 1.480087e+00 | 4.997843e-01 | 1.00 | 1.475113e+00 | 0.00000 | 1 | 2 | 1 | 0.07962910 | -1.99510231 | 1.344887e-02 |\n",
"| age | 6 | 1381 | 4.004055e+01 | 1.519329e+01 | 37.00 | 3.897919e+01 | 14.82600 | 17 | 91 | 74 | 0.63399149 | -0.39609744 | 4.088415e-01 |\n",
"| ethnicity | 7 | 1381 | 5.727734e+00 | 9.346889e-01 | 6.00 | 5.860633e+00 | 0.00000 | 0 | 8 | 8 | -2.11702045 | 7.05280083 | 2.515187e-02 |\n",
"| alcoholDependence | 8 | 1381 | 3.494569e+00 | 1.564833e+00 | 3.00 | 3.618100e+00 | 2.96520 | 1 | 5 | 4 | -0.44632263 | -1.25963346 | 4.210863e-02 |\n",
"| AgeOnset | 9 | 1381 | 1.017161e+01 | 1.254696e+01 | 0.00 | 8.334842e+00 | 0.00000 | 0 | 66 | 66 | 0.98619854 | 0.50232360 | 3.376306e-01 |\n",
"| MaxDinks | 10 | 1381 | 1.743012e+01 | 1.605756e+01 | 12.00 | 1.474389e+01 | 11.86080 | 0 | 96 | 96 | 1.89569945 | 4.72287697 | 4.320985e-01 |\n",
"| packsDay | 11 | 1381 | 1.516225e+01 | 2.301009e+01 | 5.25 | 1.018169e+01 | 7.78365 | 0 | 193 | 193 | 2.60677859 | 9.69008086 | 6.191864e-01 |\n",
"\n"
],
"text/plain": [
" vars n mean sd median trimmed \n",
"familyID 1 1381 1.007027e+04 4.193776e+01 10069.00 1.006995e+04\n",
"individualID 2 1381 1.000081e+07 4.660408e+02 10000814.00 1.000081e+07\n",
"IDFather 3 1381 7.900715e+06 4.074838e+06 10000620.00 8.625049e+06\n",
"IDMother 4 1381 7.900683e+06 4.074821e+06 10000527.00 8.625010e+06\n",
"sex* 5 1381 1.480087e+00 4.997843e-01 1.00 1.475113e+00\n",
"age 6 1381 4.004055e+01 1.519329e+01 37.00 3.897919e+01\n",
"ethnicity 7 1381 5.727734e+00 9.346889e-01 6.00 5.860633e+00\n",
"alcoholDependence 8 1381 3.494569e+00 1.564833e+00 3.00 3.618100e+00\n",
"AgeOnset 9 1381 1.017161e+01 1.254696e+01 0.00 8.334842e+00\n",
"MaxDinks 10 1381 1.743012e+01 1.605756e+01 12.00 1.474389e+01\n",
"packsDay 11 1381 1.516225e+01 2.301009e+01 5.25 1.018169e+01\n",
" mad min max range skew kurtosis \n",
"familyID 54.85620 10001 10143 142 0.05270503 -1.26045317\n",
"individualID 596.00520 10000001 10001614 1613 -0.01373681 -1.18923885\n",
"IDFather 765.02160 0 10001609 10001609 -1.42249007 0.02349663\n",
"IDMother 735.36960 0 10001607 10001607 -1.42249006 0.02349663\n",
"sex* 0.00000 1 2 1 0.07962910 -1.99510231\n",
"age 14.82600 17 91 74 0.63399149 -0.39609744\n",
"ethnicity 0.00000 0 8 8 -2.11702045 7.05280083\n",
"alcoholDependence 2.96520 1 5 4 -0.44632263 -1.25963346\n",
"AgeOnset 0.00000 0 66 66 0.98619854 0.50232360\n",
"MaxDinks 11.86080 0 96 96 1.89569945 4.72287697\n",
"packsDay 7.78365 0 193 193 2.60677859 9.69008086\n",
" se \n",
"familyID 1.128518e+00\n",
"individualID 1.254085e+01\n",
"IDFather 1.096512e+05\n",
"IDMother 1.096508e+05\n",
"sex* 1.344887e-02\n",
"age 4.088415e-01\n",
"ethnicity 2.515187e-02\n",
"alcoholDependence 4.210863e-02\n",
"AgeOnset 3.376306e-01\n",
"MaxDinks 4.320985e-01\n",
"packsDay 6.191864e-01"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"describe(gaw)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAfBUlEQVR4nO3diXqizBaF4WIQZ7z/u20GNaAkXcCuYrPre59z/phkCRWt1ciQ\n6B4AVnNbDwCwgCIBAigSIIAiAQIoEiCAIgECKBIggCIBAigSIIAiAQIoEiCAIgECKBIggCIB\nAigSIIAiAQIoEiCAIgECKBIggCIBAigSIIAiAQIoEiCAIgECKBIggCIBAigSIIAiAQIoEiCA\nIgECKBIggCIBAigSIIAiAQIoEiCAIgECKBIggCIBAigSIIAiAQIoEl4ck2E5Hrs13HvuPW+5\nycl4iDKYY+bcijW1d89PcsNJDEVaw6tI1yzKg3xs1r2iSIXrVIIjSgpFWsOrSNNbKXG5c7fl\n9z65pxXLSBpFWuOrSH+HIo1liaaG5+5/cV6G2kOR1vhti1Qf21dK5bn/invFLof21dfleZd7\n81lxGtzznnevrM5lczuv7q/lnXKXX5ttRuaK63j1o+V9Fmm8+MFSm860y6mbz+s213y5v3f3\nv2wc/l5QXWUue34LbxRpjV+KdM+e9SlGRXruhriyu8f1Gfm5Z97d4ZXqZvsz0JSsen/tbbi8\nYV+nFj9Y6rHfE7o0n7RNb7ZCx8cj64s0XnC3uo8FvX62j04njyKt8UuRDt0UrZu5dxrM8PI1\nPfsmZe9PX/fsZnazs1I0G4pq1I9mQzHsYG+0vK8ijRc/XGq/CXp0W7NH15p799nhdffxED7G\n+fo0C/ag7hNFWsMNPb/Q/7d96VP3M/b5rXYLcKqbV33Nx0u3IcjaD9nPPdvZ277wuo+W1Hy1\nPRKQ37oPP+v+WN7HS7uPxY+Wmnev6V5j7gd57xvZvUwchT8W1Jes7v+pwA+KtMYvRWon3XtX\n6DXDD+32qVV1W4Kyn/7tRH3d8/Kx6P6/19GHn8DH8j6K9Ln44VKPbQv6V2zXto/H9jvXflNT\nfIY/FlT2O1aP8cYRFGmVX4p07L/w7NLPt7op2P3j3++UTH67CZyr4r25cI+vD+/7DZf3UaTP\nxQ+Xem+bV3XH6Kr24/PAwbkbdPUR/ljQz4/La7sRirTGz+QdT/XqNdnuX9963XLfReo/P+eD\nZv5dpNGtiU3P4MZoqXnTgvb/WfOqLvtphHO3/nXeMOx+KxIzZ4SHY43fivSoz8X7ldLEFimb\n3CJ1n7bbhfxwus3aImWf3/xc/HipTc8vz63Rpd8GZe3CugN37iP8saCMAk3jYVnj1yK1urM8\nP18r/7uP1H03f379v0Uq5+wjjZfa7x9d3vtJ3Q7X8V2kUfh7H2m0K4cnirTGL0XK33vkr01F\n/etRO/dRkufH/2+R/I7ajV8iPpfaH8Puv9y/smsX1vz//jr19RP+WFD76bX7MDwsAYq0yi9F\naqZkcX+8zny2s7b9+D7N2V+G830eqVtQ0YUv2X+L9Lm8j72W8eLHS+324do7Hdzr6ML7pNT5\nM/zLeSTOyI5RpDV+e2n3OtjQ/at9eN14zfz+crbLM/JRkueFBO0Z2OvfRfpY3sc3x4sfL7X7\n9PwMXUcLK77CH+N8fspl4h8o0hq/FanfPyqev91TvrtzyAYnmG7tNWyXr5K0X84Ot/vrgoWJ\npb+Mlvf5zfHiR0t9HlwY3+mUv38faRweL+hRV/nrzC1+UKSN1WHPyMxZ/J8H5AKPc/co0kae\nL65uRZhrBJYsfrJIgcdpBkXayM+hgiDHk8UWH3icZlCkjbx/1SLMbrvY4gOP0wyKtJX62B5y\nzg6B/p0XW3zgcVpBkQABFAkQQJEAARQJEECRAAEUCRBAkQABFAkQQJEAARQJEECRAAEUCRBA\nkQABFAkQQJEAARQJEECRAAEUCRBAkQABFAkQQJEAARQJEECRAAEUCRBAkQABFAkQQJEAARQJ\nEECRAAEUCRBAkQABFAkQQJEAARQJEECRAAEUCRBAkQABFAkQQJEAARQJEECRAAEUCRBAkQAB\nFAkQQJEAARQJEECRAAEUCRBAkQABFAkQQJEAARQJEECRAAEUCRBAkQABFAkQQJEAASkWyfna\neqDYjxQni+/PnOJjg4VSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwU\nCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwU\nCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwU\nCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwU\nCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwU\nCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwUCeJSnCwU\nCeJSnCwUCeJSnCwUCeJSnCwUCeKWT5brsXStsroKjicGigRxSydLnbsfheiQgqNIELd0slQu\nO9+6W/dL5iq5AUVAkSBu6WTJ3O19++YymcFEQpEgbulkce63T/SjSBDHFml9Dlizj3S5d7fY\nRwKWT5ZicNQuryWHFBxFgrgV55Gq7jxSVh45j4TkpThZKBLEpThZKBLEcYnQ+hzAJUICOYBL\nhARyACdkBXJAqEuE3NDCVQRDkSAuwhZJ3XykSBAX4RIhdfORIkFchEuE1M1HigRxES4RUjcf\nKRLERZgs6uYjRYI4irQ+ByyfLPXBueLyXMifS1E3HykSxC2+RCjrL7TrF0KRkLjlh79PTZtO\nWXeZHUVC6pafkO0+3LP8TpGAtZcI1UVBkYClkyV3r5OweUGRkLylk+XkDs9bd1dQJKRu8WSp\n3u25/OcCb3XzkSJB3PLJcitft+4HioTEcWXD+hxAkQRyAEUSyAEUSSAHUCSBHECRBHIARRLI\nARTpr5yvoKPFLlCkeDkYRpHi5WAYRYqXg2EUKV4OhlGkeDkYRpHi5WAYRYqXg2EUKV4OhlGk\neDkYRpHi5WAYRYqXg2EUKV4OhlGkeDkYRpHi5WAYRYqXg2EUKV4OhlGkeDkYRpHi5WAYRYqX\ng2EUKV4OhlGkeDkYRpHi5WAYRYqXg2EUKV4OhlGkeDkYRpHi5WAYRYqXg2EUKV4OhlGkeDkY\nRpHi5WAYRYqXg2EUKV4OhlGkeDkYRpHi5WAYRYqXg2EUKV4OhlGkeDkYZqlI0u9CTpHgzVSR\nlOdgGEWKl4NhFCleDoZRpHg5GEaR4uVgGEWKl4NhFCleDoZRpHg5GEaR4uVgGEWKl4NhFCle\nDoZRpHg5GEaR4uVgGEWKl4NhFCleDoZRpHg5GEaR4uVgGEWKl4NhFCleDoZRpHg5GEaR4uVg\nGEWKl4NhFCleDoZRpHg5GEaR4uVgGEWKl4NhFCleDoZRpHg5GEaR4uVgGEWKl4NhFCleDoZR\npHg5GEaR4uVgGEWKl4NhFCleDoZRpHg5GEaR4uVgGEWKl4NhFCleDoZRpHg5GEaR4uVgGEWK\nl4NhFCleDoZRpHg5GEaR4uVgGEWKl4NhFCleDoZRpHg5GEaR4uVg2PJJcD2WrlVW11CrmIki\nYTNLJ0Gdux9FkFXMRpGwmaWToHLZ+dbdul8yV4VYxWwUCZtZOgkyd3vfvrksxCpmo0jYzNJJ\n4Nxvn4itYjaKhM2wRYqXg2Er9pEu9+4W+0gUCcsnQTE4apfXQVYxF0XCZlacR6q680hZeeQ8\nEpLHlQ3xcjCMIsXLwbCVk+CUO1degq7CH0XCZtadR3oecfjzoB1FQgJWFalyVf143Ct3CrGK\n2SgSNrOqSJnrjnvXLg+xitkoEjazqkivS4O+LxFyQ8tHN3NMynMwbFWRDq8icYkQEre8SOXx\ndHHn5mZdcYkQUre8SO+Xbc5lXCKExC2eBLfb6VSW3SGH6s8eUSQkgCsb4uVgGEWKl4NhFCle\nDoZRpHg5GEaR4uVg2NrD3x4XL1Ak2Ld0Epwo0uwcDFt+Hin7+++rCqxiLoqEzSyfBLf//BqS\nwCpmokjYzIpJcBr8abtAq5iHImEzHLWLl4NhFCleDoZRpHg5GEaR4uVgGEWKl4NhFCleDoZR\npHg5GEaR4uVgGEWKl4NhFCleDoZRpHg5GEaR4uVgGEWKl4NhFCleDoZRpHg5GEaR4uVgGEWK\nl4NheyiS8yU8IIoEb7sokpEcDKNI8XIwjCLFy8EwihQvB8MoUrwcDKNI8XIwjCLFy8EwihQv\nB8OGkyA/3kOvIugCtOdg2HASOOdCdIkiwb7hJKjPhxBdokiw73MSXI+5dJcoEuybmAS3rNku\nnYKuIswCtOdg2PckuBTdldS+78e3ZBWBFqA9B8M+JkF9bDZH+aVu2lQGWkW4BWjPwbDRJLi2\nBxuq/n34vH+7Z94qQi5Aew6Gjc4jNRujU/36RhZiFUEXoD0Hw0bnkcpL6FUEXYD2HAwbnUcK\nv4qgC9Ceg2GjSVBX7eu5rJJtFEWCfcNJcM+6IwzOZaLXNlAk2DecBIU7tNuiupI79P25iqAL\n0J6DYeOLVj9viK8i6AK052DYcBJkrt85qilSkBwMG06CyhXX5sO1cFWoVQRdgPYcDBtNguL5\nF0vlrrP7WkXIBWjPwbDxJDiXbY0Er/z+XkXABWjPwbAIk4AiwT6KFC8HwyhSvBwMG02C9tfM\nZ71ByvxVhFyA9hwMG06C4+x3Gpq9iqAL0J6DYeMTssLH675XEXQB2nMwbPISoXCrCLoA7TkY\nNpwEpQvyG0kUCfaNf42iu0Qo5CqCLkB7DoaNX9pxsCFkDoZRpHg5GMYJ2Xg5GEaR4uVg2HgS\nXMr2VV0p+3YUFAn2ff8+UvM1/vhJkBwMG06Ckyu63zI/uUOoVQRdgPYcDBtfIlQ/nn+QK9Qq\ngi5Aew6GfV4iRJHC5WDYcBLkzy3SzeWhVhF0AdpzMGxiH+kifBU4RYJ9o0lQ8leEQuZg2Pd5\nJFeeQ64i4AK052AYVzbEy8EwihQvB8MoUrwcDOPXKOLlYBhFipeDYROT4FqIvs9YAkXy5bk8\n7NDUk1tz0eqmOezQ5JPLS7tNc9ihqSf35LLQqwiyACs57ND0wYZjqFUEXYCVHHZoqki57F8u\npkgzc9ghTsjqy2GHKJK+HHbolxOykmc9KNLMHHaIIunLYYdGT+4xuzT/vWb8Yt+mOezQ8Mk9\nulv38eZErxGiSDNz2KHxS7vPG+KrCLoAKzns0PDJzd5bJP6K0JY57NDwya1ct4/EXxHaOIcd\nGj25xfN4XRVuFSEXYCWHHRo/uefurwhdQq4i4AKs5LBDXNmgL4cdokj6ctih8ZPLG41pyGGH\nvg82PHijsY1z2KHhk8sbjenIYYfGJ2R5ozENOezQ5yVC/kW6Hvs3ryirq/8qFtE+8SkSRk/u\nnDcaq/PBL1z8fbU4RZqZww5N7CN5XSJUuezcX5l3b/J/Xgrx6/yR/sOKVnLYodGTO+ONxl4X\nuLZuf//5rt+L9P/VJJnDDn2fR/J7o7HRZuLvbQZFmpnDDi19ctkihcthh4ZPbjnjqu/2Vy76\n07Yr9pE815VaDjvk/wrtQzE4GJDXvqvw+0biOezQ5+Fvf9eqOzaRlcel55G0T2iKBG/DJ7cu\ni/90YvUq/L6ReA47NH5pF+QtsSjSzBx2aHmR1l8ipH1CUyR4W/rkSlwipH1CUyR4W/rkilwi\n5Lmu1HLYodeTO3e3iBOy4XLYoXGR/Ov0n0uEvK451T6htRdJ+qJfrLC0SGyRwuV8sSVUZGmR\nuEQoXM4XRVJkaZG4RChczhdFUmRxkbhEKFjOF0VSZHmRZq/C/xuJ53x5r5eDEuH9FCnYQ0qR\nZuZ8aR9fUiiSvpwv7eNLSoQHjyLNzPnSPr6kUCR9OV/ax5eUpQ/ejJeCFGlmzpf28SVl6YN3\nokjBcr60jy8pix+8W+bx1+/+XoX2Ca19omofX1KWP3g337eapUgzc760jy8pKx680+C61UWr\n0D6htU9U7eNLCkft9OV8aR9fUiiSvpwv7eNLCkXSl/OlfXxJoUj6cr60jy8pFElfzpf28SWF\nIunL+dI+vqRQJH05X9rHlxSKpC/nS/v4kkKR9OV8aR9fUiiSvpwv7eNLCkXSl/OlfXxJoUj6\ncr60jy8pFElfzpf28SWFIunL+dI+vqRQJH05X9rHlxSKpC/nS/v4kkKR9OV8aR9fUiiSvpwv\n7eNLCkXSl/OlfXxJoUj6cr60jy8pFElfzpf28SWFIunL+dI+vqRQJH05X9rHlxSKpC/nS/v4\nkkKR9OV8aR9fUiiSvpwv7eNLCkXSl/OlfXxJoUj6cr60jy8pFElfzpf28SWFIunL+dI+vqRQ\nJH05X9rHlxSKpC/nS/v4kkKR9OV8aR9fUiiSvpwv7eNLCkXSl/OlfXxJoUj6cr60jy8pFElf\nzpf28SWFIunL+dI+vqRQJH05X9rHlxSKpC/nS/v4kkKR9OV8aR9fUiiSvpwv7eNLCkXSl/Ol\nfXxJoUj6cr60jy8pFElfzpf28SWFIunL+dI+vqRQJH05X9rHlxSKpC/nS/v4kkKR9OV8aR9f\nUiiSvpwv7eNLCkXSl/OlfXxJoUj6cr60jy8pFElfzpf28SWFIunL+dI+vqRQJH05X9rHlxSK\npC/nS/v4kkKR9OV8aR9fUihSxJyvrcbnmcMEikRubg4TKBK5uTlMoEjk5uYwgSKRm5vDBIqk\nMKf8oAQmUCRyc3OYQJHIzc1hAkUiNzeHCRSJ3NwcJlAkcnNzmECRyM3NYQJFIjc3hwkUidzc\nHCZQJHJzc5hAkcjNzWECRSI3N4cJFInc3BwmUCRyc3OYQJHIzc1hAkUiNzeHCRSJ3NwcJlAk\ncnNzmECRyM3NYQJFIjc3hwkUidzcHCZQJHJzc5hAkcjNzWECRSI3N4cJFInc3BwmUCRyc3OY\nQJHIzc1hAkUiNzeHCRSJ3NwcJlAkcnNzmECRyM3NYQJFIjc3hwkUidzcHCZQJHJzc5hAkcjN\nzWECRSI3N4cJFInc3BwmUCRyc3OYsPzBux7L7q21y+q6cBXaJww5eFv64NX54G3qi2Wr0D5h\nyMHb0gevctn51t26XzJXLVqF9glDDt6WPniZu71v31y2aBXaJww5eFv64Dn32yf+q9A+YcjB\nG1skcnNzmLBiH+ly726xj5RaDhMWP3jF4KhdXi9ahfYJQw7eVpxHqrrzSFl55DxSWjlMiPDg\nUSRjOUwI9OC5obXrJqcrhwkrH7xT7lx5WbgK7ROGHLytO4/0POLw50E7imQthwmrilS5qn48\n7pU7LVqF9glDDt5WFSlz3XHv2uWLVqF9wpCDt1VFeh1H4BKhpHKYsKpIh1eRuEQopRwmLC9S\neTxd3Lm5WVdcIpRUDhOWF+l9jsi5jEuEUsphwuIH73Y7ncqyO+RQ/dkjimQthwkRHjyKZCyH\nCRSJ3NwcJlAkcnNzmECRyL1zvjyXlxSKRC5ULikUiVyoXFIoErlQuaRQJHKhckmhSORC5ZJC\nkciFyiWFIpELlUsKRSIXKpcUikQuVC4pFIlcqFxSKBK5ULmkUCRyoXJJoUjkQuWSQpHIhcol\nhSKRC5VLCkUiFyqXFIpELlQuKRSJXKhcUigSuVC5pFAkcqFySaFI5ELlkkKRyIXKJYUikQuV\nSwpFIhcqlxSKRC5ULikUiVyoXFIoErlQuaRQJHKhckmhSORC5ZJCkciFyiWFIpELlUsKRSIX\nKpcUikQuVC4pFIlcqFxSKBK5ULmkUCRyoXJJoUjkQuWSQpHIhcolhSKRC5VLCkUiFyqXFIpE\nLlQuKRSJXKhcUigSuVC5pFAkcqFySaFI5GbnfHkuzwSKRG7rnAkUidzWORMoErmtcyZQJHJb\n50ygSOS2zplAkchtnTOBIpHbOmcCRSK3dc4EikRu65wJFInc1jkTKBK5rXMmUCRyW+dMoEjk\nts6ZQJHIbZ0zgSKR2zpnAkUit3XOBIpEbuucCRSJ3NY5EygSua1zJlAkclvnTKBI5LbOmUCR\nyG2dM4Eikds6ZwJFIrd1zgSKRG7rnAkUidzWORMoErmtcyZQJHJb50ygSOS2zplAkchtnTOB\nIpHbOmcCRSK3dc4EikRu65wJFInc1jkTKBK5rXMmUCRyW+dMoEjkts6ZQJHIbZ0zgSKR2zpn\nAkUiFyzny3N5qlEkcnvJqUaRyO0lpxpFIreXnGoUidxecqpRJHJ7yalGkcjtJacaRSK3l5xq\nFIncXnKqUSRye8mpRpHI7SWnGkUit5ecahSJ3F5yqlEkcnvJqUaRyO0lpxpFIreXnGoUidxe\ncqpRJHJ7yalGkcjtJacaRSK3l5xqFIncbnKa/wYERSKXak4URSK3eU54S7PJlmv5wq7HshtN\nWV0XrkL9E0yOnK+lC6vzQbOLZavQ/gCSI+dt6cIql51v3a37JXPVolVofwDJkfO2dGGZu71v\n31y2aBXaH0By5LwtXdhoT+17t81rn857pxAIYeHcn57MC+83Y4sE2LdiH+ly7279dx8JsG/x\n5q0YbCLzWnJIwP6sOI9UdeeRsvL4n/NIgH2bXE4BWEORAAEUCRBAkQABFAkQQJEAARQJEECR\nAAEUCRBAkQABFAkQQJEAARQJEECRAAEUCRBAkQABFAkQQJEAAXso0kZ/rAmxbD3BJOzhh9A+\nRsa3jvbxednDD6F9jIxvHe3j87KHH0L7GBnfOtrH52UPP4T2MTK+dbSPz8sefgjtY2R862gf\nn5c9/BDax8j41tE+Pi97+CG0j5HxraN9fF728ENoHyPjW0f7+Lzs4YfQPkbGt4728XnZww+h\nfYyMbx3t4/Oyhx9C+xgZ3zrax+dlDz+E9jEyvnW0j8+LiR8C2BpFAgRQJEAARQIEUCRAAEUC\nBFAkQABFAgRQJEAARQIEUCRAAEUCBFAkQABFAgRQJEAARQIEaC7SKXdZVXc3q+x9U5Xr8/FT\nOb7bwbnDvbupcXz1YFAaxzeP4iJV3TsVZO3DW3Q3861H9KXO+sdP5fguuh+/e9aPr226xvHN\npLdIN3do5sDJHdp/97Pb45a569Zj+lT2b0mic3xZM6i6dJXS8R3akTX/Wmp+fmfQW6SyH1o7\nVSt3aW6d3XHbEX05P9/bR+X4zt1ErV2mdHxO//M7h94iPbUPdOna7f/NlVsPZuzuin42qBzf\nwd1eN1WO7/mquC26yvHNpL1ItStG/3hpUrh7PySV48vd45h1L491ju/4fGl3VDq+mbSP/dRu\n9XU+0Ed3figuknNltzP/UDq+x6k92pCdHlrHN4/ysd+zdnOv8oHuXomoLlJ7sOGg91/8Y3eo\nrt0v0jm+eXSPvc6K9oPKBzpvDyyrLlK7j3RvDyqrHN+pfWnXFP2kdHwz6R570Z9ayBQ+0Ifu\nSFM/JI3jG85OlePLXbv7VrdFVzm+mTSP/Z4X/Xn5/qjOXdVRneGb22sc3/D0gcrxOeXjm0lx\nkS6ueN46dv/6X7rDPFoMi6RxfM9B3dsHUeX4+s1Qd55L5fhm0luk+7tHis98K76yodk7qtt9\nkLPS8VWuvbiuUnvlxUx6i3T4+Re/eT3dKv57n+ier09Uju/4MyiV4yuUj28evUUavHR6Xii8\n9YgmPIukc3yX4jUoneP7GZTO8c2it0jAjlAkQABFAgRQJEAARQIEUCRAAEUCBFAkQABFAgRQ\nJEAARQIEUCRAAEUCBFAkQABFAgRQJEAARQIEUCRAAEUCBFAkQABFAgRQJEAARQIEUCRAAEUC\nBFAkQABFAgRQJEAARQIEUCRAAEUCBFAkQABF2jGePD14Lvbqfmjf5a7eehjoUaSduvXvC5pt\nPQ70KNJOFa6qXV24fb/zqh0Uaafat4F2j5pNkhIUSaMqa7Y03TumX0rXvd/31R3ab1zcpf1w\ncNfM1e8n7xUa3/Vxyl12ij/4NFEkhYp27+fQtuHY7wk1Jcm6Z+rQv5RrtkOVyy/PJ+8nNLzr\no+y+Wmz0M6SGIulzcdntccu6F2/u/Hic+0o1tx790YWzO7adahpzfTyGoeFdL66oH81O1GXT\nnyUZFEmfspv8F/d+btpb93bbcnWlu7WbnXvz1VvVVKl8DEPDu5auPTReDxIIiCLp82xQ/+F+\nORbdraIpRuVuzcbo/nq95i65O41Cg7u6l/g/QIp4mPUZFql4l+HSVCjLH3n+fJX36I/a5aMQ\nRdoKD7M+gzYcXH663PsvuPzqqmajVOfueT2D+wqNirTJ4FPFo63PYEena8OzSJU7NN+4NP9t\nj4T3h7+780iD0GgficMMEVEkfUZH7a6PW7/787g2L9Pq7iVb25CDK19XNgxCg7ue25uPEwcb\n4qBIChXvvZvqeas7zJ0/d4i6ixnq7H2t3TD0c9fnzey+3c+REoqkUZW54tq14eCaW5d+s3Ls\nzrken5fX3av31d/D0M9d2ysb3IEexUGR1Pr/RQm/PnlczxAdRdKnu1KhLv9/Yff3k+d9Vwij\nSPocl/+q0Yq7YhWKpNCpcC5ftlFZcVesQZEAARQJEECRAAEUCRBAkQABFAkQQJEAARQJEECR\nAAEUCRBAkQABFAkQQJEAARQJEECRAAEUCRBAkQABFAkQQJEAARQJEECRAAEUCRBAkQABFAkQ\nQJEAARQJEECRAAH/AM+2Jz/ZrLUvAAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title \"Histogram of gaw$age\""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"hist(gaw$age)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Test Shapiro-Wilka"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" Min. 1st Qu. Median Mean 3rd Qu. Max. \n",
" 17.00 29.00 37.00 40.04 51.00 91.00 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"summary(gaw$age)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"\tShapiro-Wilk normality test\n",
"\n",
"data: gaw$age\n",
"W = 0.94605, p-value < 2.2e-16\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"shapiro.test(gaw$age)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"0.634680731360363"
],
"text/latex": [
"0.634680731360363"
],
"text/markdown": [
"0.634680731360363"
],
"text/plain": [
"[1] 0.6346807"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"library(moments)\n",
"skewness(gaw$age)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"-0.0160351083902215"
],
"text/latex": [
"-0.0160351083902215"
],
"text/markdown": [
"-0.0160351083902215"
],
"text/plain": [
"[1] -0.01603511"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"skewness(log(gaw$age))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAgAElEQVR4nO2dibajKhAA0Rizy///7UTNot7RIN0iYtV5b25IbEDbciXRWAAQ\nY9buAEAKIBKAAogEoAAiASiASAAKIBKAAogEoAAiASiASAAKIBKAAogEoAAiASiASAAKIBKA\nAogEoAAiASiASAAKIBKAAogEoAAiASiASAAKIBKAAogEoAAiASiASAAKIBKAAogEoAAiASiA\nSAAKIBKAAogEoAAiASiASAAKIBKAAogEoAAiASiASAAKIBKAAogEoAAiASiASL4YFt0GWSxr\nIdcG85mL1yvz39k6BunMKTNG0FIdnp/1uhOUiBPx/54MuRtT+LY1M2uFMXeX6aIT6ZYF6dLp\n2bZApINpKBV7FJCIE+EmkuvaPcAna67ORieS25IUk/ul4sXZvBDUsSIRJ8Kp1efKnXs05Zc1\nxzVlVZGmJwrUFx+eC/fS/Bfm6EebiBPh1Gr5XPYeTfll7eK2C4thj1Sd6n1ucWnfMe/Jrsd6\np399hTyepcO5E/nImxm8PHfzJi8f7/rOuclvz61PZg63fvO9+oYJ61ffqfW59Ot6qme5qqdr\nNob1ZM1/WX/ivxVVZWay10fREHEiPsWpRrP3REGy9pr+1zJ1mEaLkfw9slfWDr38vQ5oX0eo\nt9ck38i8CXhP1Sy31wTP3Jaf9z506+uuJv+rvlPrqd0gXU27FXxun05tJj/hvS4MKnrP22BV\nWpmIE/EuTDV6G+nLQlkrnNIXgUjHZmar51ycOwu2eM9ou9CyT/Ed2Syj52HvoWr29Z20PDch\n3Sy09Or7k79+9d1a242ZbbaPtln+j6Z0fIf3uzDo57vosk0LR8SJeBUmGz3XHfzv24tk7dPc\n9DKdlwIRpsvrjfbfeidatfP++qjelpyr58HG8++12aRk9Z/sG1kvh3oX/ujV9Hy3PqfM782f\nb9uD+gZHFIPqe7XmzdHBu89tJx9tjpsDj97Eg4radFVHv2P6xYg3Ea/idKPva3aBsuZ23S4C\nkerufw6G3wv2+N4MlM02pWiXej3L78jroOr231vvz3eCQX2D/A2r79Z6qpdnu++/1Rk+1Z/c\n2o3WYTjxoKKiPUS3nrc9liLeRHz3jRONviUIlLWH0zXCCEQ6tW+8Uvj9qJmZZjPSOb0cfvyc\n4FIePhseY//8+cR16xvkb1h9t9ZHncuyudpT1n9fp6CXptPlYOJBRd/ZjerYLt5EfJfbRKPv\nkFBZG3RxZJn+nkSNb4f6S7h8d/vx56P3K/M3f235kndWiOn89V71F86w+l6t+XN51v9nzw1T\n9jXieXzRbqq6E5uxlIRczj+JNxF/3hxZqv2qFs7aZkSy1aW9hnLoffTZJmX/3RA2xXoLkx/P\nd5f8deub3iP1a32uXtfXdu3abs2yujJjPgfY34kHFWUuKQhPvIn4zx7pb6PvkFBZ245INc19\ng+97xc9D8+bT/PX+z/wVc86R+rW2R9rXzxF3cwh/+qSkN/Hfo+3eGUQkxJsI+1luE42+Q0Jl\nbSsi5Z9zu/cWqhq9bmMGuXn9/b0hdLtqZ3r1vGptr4a2b7fHCHVlz/8f7zsu34kHFdXFW/On\ne4K7OvEm4lWcbvTwOuUJlLVHjFft+q8+S+3wsO97aPX8138/N8zaAR1/b180FR2aia/Zz/wN\n6xvkr199v9bm1KEOOpr3eernNsdlOPHIHYm47shGnIhXcbLR43txhsnazWlMUQQifc5xG/+P\n7xfvZdnOxPU1ySA3r1vS9Y2/23T+BvUNPuxX36+1KV5eE916lR3+TDzo56sY2TDxiBNhvmKO\nNvq5Qxoma1HekO2/er/RHJYfXr0tPkvvmHXua9zr0VDXP7mp386O98f7Pvl/an/Tq2/4Yb/6\nXq2v09R+0Dn/fLOlP3G/IluV+fseYDxEnIhPcaLR7x3SIFlz+85GSJEUqJa9IzOn+skz0IX7\nuT6rzOC70cFltYWzFt+gVQGv3fT9sMwYAZ/q/5uShfu5PqvM4LDR8nOdIkDWrvF9jULA9+Rz\nkevJatUv3M/1WWUGh422F94CZa34DIuYZCMifUb4L3Parlb9wv1cn1Vm8E+j7WlLkKzF+FVz\nCdWpvniZHRfaDKpVv3A/12eVGRw2+lq7Q2Qtxh8/AUgWRAJQAJEAFEAkAAUQCUABRAJQAJEA\nFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUAB\nRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAk\nAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQ\nAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUCBmEUyQ9buEPixhzTGPFfDvsXcV5jATJRSIea5\nQqREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1\nQaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1\nQaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1\nQaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1\nQaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1QaREQKR1\nQaREQKR1QaREQKR1QaREQKR1QaREmBLJ9AjZK11i7joiJcKkSOMfbYqYu45IiYBI64JIiYBI\n64JIiYBI64JIiYBI64JIiYBIU9xORXPFsihviv3pgkiJgEjjVHnn6v9BtUsfEEnK8hs7JxBp\nnNJkl3vz6nHNTKnXoQ6IJCPExs4JRBonM/fP67vJdDozAJFkhNjYOYFIE3FmrKAHIskIsbFz\nApHGYY8UPyE2dk4g0jjPw4bro3nFOVKssEcKiHfXD50T2bzS7NIHRJIRYmPnBCJNcSubS6tZ\nceI+UqQE2Ng5gUjrgkhSlt/YOYFI64JIiYBIUzBECBxBpHEYIrQZzs9UFdc1e4BI4zBEKH7a\nW0evKw4rXrRDpAm4IRs/jUilKavn1q405xU74lracIYXGiKk8tMwiCSjWfKZaa57VyZfsSOu\npQ1nOMAeCZFWohHpvR1baGPn1hHX0oYzHGCIECKtRKPH8S3SMhs7t464ljac4QBDhBBpJYwp\nTueruTxfVuVCGzu3jriWNpzhAEOEEGklOodtzzwts7Fz64hracMZDtB1RFqL+/18LormkkM5\nPdQOkaQgElhEkuPd9epozOF1v3z6og8ixQ8iSfEeIpS1A+3aShBp4yCSFP/L3+enTeesGWaH\nSFsHkaT435Bt/jyy/IFI2weRpEiHCFWHAyJFSv8ZXsvkyK0jrqUNZ9i367l5X0/ND4gUJ2dE\nCodv18/m+Hr1MAdEipN75vpNMUSS4t318mPPdamtHSJJubt+DQmRpPh3/V68Xz2OiBQp584g\n/SkQSQojG8AikhxEAotIchAJLCLJQSSwiCQHkcAikhxEAotIchAJLCLJ2ZRIMwaPwSwQScqm\nRFKqF/6ASFIQCSwiyUEksIgkB5HAIpIcRAKLSHIQCSwiyUEksIgkB5HAIpIcRAKLSHIQCSwi\nyUEksIgkB5HAIpIcRAKLSHIQCSwiyUEksIgkB5HAIpIcRAKLSHIQCSwiyUEksIgkB5HAIpIc\nRAKLSHIQCSwiyUEksIgkB5HAIpIcRAKLSHIQCSwiyUEksIgkB5HAIpIcRAKLSHIQCSwiyUEk\nsIgkB5HAIpIcRAKLSHIQCSwiyUEksIgkB5HAIpIcRAKLSHJiEmn41HJECkZQkcaTvOGURiXS\nvPKGl3p0sEeSgkhgEUkOIoFFJDmIBBaR5CASWESSg0hgEUkOIoFFJDmIBBaR5CASWESSg0hg\nEUkOIoFFJDmIBBaR5CASWESSg0hgEUkOIoFFJDmIBBaR5CASWESSg0hgEUkOIoFFJDmIBBaR\n5CASWESSg0hgEUkOIoFFJDmIBBaR5CASWESSg0hgEUkOIoFFJDmIBBaR5CASWESSg0hgEUkO\nIoFFJDmIBBaR5CASWESSg0hgEUkOIoFFJDmIBBaR5CASWESSg0hgEUkOIoFFJDmIBHaDIpk+\ngs4pgUhgtyjSRGkVEAksIslBJLCIJAeRwCKSHEQCi0hyEAksIslBJLCIJAeRwCKSHEQCi0hy\n/LtwOxXNTeWivCk1gUirgUhSfLtQ5Z0BGgedJhBpNRBJim8XSpNd7s2rxzUzpUoTiLQaiCTF\ntwuZuX9e302m0gQirQYiSfHtQm/A7fToW0SKH0SSwh4JLCLJEZwjXR/NK86REgCRpHh34dC5\napdXKk0g0mogkhTBfaSyuY+UFSfuI20eRJISoAuIFD+IJAWRwCKSHGEXzrkxxVWpCURaDUSS\nIruP9LriMHnRDpE2ACJJEYlUmrKy9lGas0oTiLQaiCRFJFJmmuvelclVmkCk1UAkKSKR3kOD\n/g4R8vr1PkRaDUSSIhLp+BaJIUIbB5Gk+ItUnM5Xc3m+rEqGCG0dRJLiL9LnsM2YjCFCGweR\npHh34X4/n4uiueRQTnqESBsAkaQE6AIixQ8iSUEksIgkB5HAIpIcRAKLSHIQCSwiyZFe/nYY\nvIBI8YNIUny7cEaklEAkKf73kbLp31f1aAKRVmPrIq3/aGb/Ru8/voY0vwlEWo2tizRRCoSg\n0XPnp+1UmkCk1UAkKVy1A4tIchAJLCLJQSSwiCQHkcAikhxEAotIchAJLCLJQSSwiCQHkcAi\nkhxEAotIchAJLCLJQSSwiCQHkcAikhxESpnbqXmqoilKracqeoFIYZtAJF2qvPMdnelvjyGS\nFERKl9Jkl/abLnpPnvcCkcI2gUi6ZJ0vjN2VHnTgBSKFbQKRdOl951rpdzX8OuJaQiS/Jsz0\nd+0RSQZ7pICsK9L0hIgk43mOdH00rzhHWhxESphDZ2+f6zx6xwtEWrgJRFqYW9ncR8qKE/eR\nFgaRwCKSHEQCi0hyECllNjdEyPkXUxFp4hNE0mXrQ4QQybUJRFqUrQ8R2qxI+emxdBOTnyDS\nb+bkaOs3ZDcrUn23YQGXEEmROTn6MUQo3AMc9iZSdTku4RIiKTInR+yRAjJs9HbKtV1CJGVc\nc7T1IUKbFsnWjxB7bvPOizbx/08QyRm3HG18iNDGRboeHC6XypoY+QSRXHHN0baHCG1ZpOr0\n3NTl1+qZqWKhJsY/QSQnwuZIv/YdiHSrT2TL9gxV70IOImkSOkf6tacvUn0Ke34fSk9f5fFt\nYvITRPpN8Bzp156+SKa4Lt3E5CeI9JvgOdKvPX2RJq/r6DQx+Qki/SZ4jvRrT18kW5X1sUJW\n6mYLkTSZkSP3sdSIJKbb6CNrlrYxmerYBkRSZE6OzogUjm6jB3Ost3NVqXdZddjE5CeI9JtZ\nObpnrncDEUlK72KDGb5Qb2LyE0T6zbwc3acHBnWq9e2PR+3pi5SZ9sC7QqRomZmjc2fc6hSI\nJKXbaGkO9UiS28F1Oza/iclPEOk3wXOkX3v6In0GOeqNs/vTxNQniORA6Bzp174DkeylHuN4\nUBz5/beJiU8QyYXAOdKvfQ8iBW4CkWIBkaQgElhEkoNIYBFJTq/RU+5yF1zUxNQniORA6Bzp\n156+SKdlflQGkRQJniP92tMXKdP8pYb/NzH5CSL9JniO9GtPX6SFft0MkRQJniP92tMXqTCL\nfNsFkRQJniP92tMX6ZEdfvzYjLiJyU8Q6TfBc6Rfe/oiLfQLtoikSPAc6deOSApNTH6CSL9B\npJlVhiJAo4gUP4gkBZHAIpKcfqPXoj5iKHQfR4FIqgTOkX7tOxDp0B568+MnERM6R/q1py/S\n2RyabzCfzXGpJiY/QaTfBM+Rfu3pi1T/HsDrx56WamLyE0T6TfAc6deevkjNIQMiRU3wHOnX\nnr5I+Wtrdzf5Uk1MfoJIvwmeI/3a0xfpdfx9VR5hjEiKBM+Rfu3pi2QLfkUoekLnSL/2HYjU\n3KMwxWXJJiY+QSQXAudIv/Y9iBS4CUSKBUSSgkhgEUkOIoFFJDndRvkaRfzwNYqZVYYCkbYF\nIs2sMhT/afR2UH3O2HIiDfHu4fYIlyP92ncjkq22OWh1TyKFy5F+7fsRaaNj7XYlEmPt/OIW\n43+Nnk22dBP//QSR3AmWI/3a0xfpe7ZxWqqJyU8Q6TfBc6Rf+35EynV/FReRFAmeI/3a0xcp\neBOIFAuIJAWRwCKSnP+fI6nelkEkRYLnyLmGiY4hknoTk58g0m/iFUmjlIhI9pRdn//esm1+\nsW8XIgXPkV8N+xbpZO7N37tRHX+CSIoEz5FfDfsW6XOkwMiGaAmeI78a9i1S9tnabfJXhHYh\nUvAc+dWwb5FK0xx/b/VXhHYhUvAc+dWwb5Ha35V+Ui7XxNQniORA6Bz51bBzkeyl+YWa65JN\nTHyCSC4EzpFfDXsXKXATiBQLiCQFkcAikpx+o5t+0NhORIr0QWOI1GHbDxrbh0ixPmgMkb5s\n/EFjuxAp2geNDdZlvyGsiYi08QeN7UKkaB80xh6p89rYGUm6ndoHIxTlzb2JyU8Q6TfRPmgM\nkb7MeYhVlXf23NMjkRFJkWgfNIZIX+Y8xKo02aUd9fV4Tj95m/3bhBky3heH8i5FivZBY4jU\nYcZDrN6DJ2vu0z8NZf7z6r9lRHIg1geNIVIX94dY9fYm08friKRKpA8aQyQ/2CMlBSJJ6TZa\nzBhRXA/nb28JzjlHmmj898eIZOflaAaIJMX9CG3AoXPNIK/cmkAkMQs9cwORpHQbrS+tunMr\nm/PerDg530dCJDHzcuQMIknpNloVhx9OCJtAJDGL50inhn2LtMDvpfWbQCQxi+dIpwZEck+S\nxxAhRBKDSHMbCIRvo15DhBApVhBJim+jfkOEphtHpNVAJCnvRuceKXBDNjwLPm4akaT0RXJP\n1Y8hQv8fmrqqSD9GzG6AuTmaU7VyDYjkGre9PdL2d2CI5NNAIHxF2t4QIUSaqlq5BkRyDtzc\nECFEmqpauQZEco/c2hAhRJqqWrkGRFqwidhE2tzFB0TyaSAQX5EWW6liFWleeAQEyZFODYiE\nSPGCSD4NBCJAo4gUP4gkBZEcw9MGkaT4NjrjMAOR4geRpPg2ekaklEAkKd6N3jPXX1ZDpPhB\nJCn+jd5dH2OKSPEzNvPuR/BLiDTReEIiPY/u7r8nsoi0BUZFcprq15Qqe6R0RZrfBCLFCiJJ\nQSTH8LRBJCmI5BieNogkBZEcw9MGkaQgkmN42iCSFERyDE8bRJKCSI7haYNIUhDJMTxtEEkK\nIjmGpw0iSUEkx/C0QSQpiOQYnjaIJAWRHMPTBpGkIJJjeNogkhREcgxPG0SSgkiO4WmDSFIQ\nyTE8bRBJCiI5hqcNIklBJMfwtEEkKYjkGJ42iCQFkRzD0waRpCCSY3jaIJIURHIMTxtEkoJI\njuFpg0hSEMkxPG0QSQoiOYanDSJJQSTH8LTZgkieP2AcCERyDE+bLYjkWQoEIjmGpw0iSUEk\nx/C0QSQpiOQYnjaIJAWRHMPTBpGkIJJjeNogkhREcgxPG0eRVB6hh0jiJhApVnz2SIgUuFFE\nih9EkoJIjuFpg0hSEMkxPG0QSQoiOYanDSJJQSTH8LRBJCmI5BieNogkBZEcw9MGkaQgkmN4\n2iCSFERyDE8bRJKCSI7haYNIUhDJMTxtEEkKIjmGpw0iSUEkx/C0QSQpiOQYnjaIJAWRHMPT\nBpGkIJJjeNogkhREcgxPG0SSgkiO4WmDSFIQyTE8bRBJCiI5hqcNIklBJMfwtEEkKYjkGJ42\naYk08athi4FIjuFpk5ZIE6XFSEmkIaLa9wUiSUlJJNXJk+B2KppNSlHepidEJCmINFbePlXe\n2T0fJidFJCmINFbePqXJLvfm1eOamXJqUkSSgkhj5e2Tmfvn9d1kU5MikpSURZq+DJq+SL1Z\nnr4MjEhSUhZJNHkCsEf6W1oMRBorb5/nOdL10bziHGlxEGmsnACHzoFtXk1NiUhSEGmsnAK3\nsrmPlBUn7iMtDCKNlXcFIklBpLFy8riM7EQkVxBprJwM59yY4jo9DSJJQaSx8vZp9zOvKw6T\nF+0QSQwijZW3TyNSacrK2kdpzpOTOr2PSOMg0lh5+zQiZaa57l2ZfHJSp/cRaRxEGitvn0ak\n93UEhggtCyKNlbdP487xLRJDhBYFkcbK28eY4nS+msvzZVUyRGhZEGmsvH0694iMyRgitCiI\nNFZOgPv9fC6KesayctIjRBKDSGPlXeEl0sTXvRBp0SYQKVbYI0lBpLHyrkAkKYg0Vt4ViCQF\nkcbKuwKRpCDSWHlXIJIURBor7wpEkoJIY+VdgUhSEGmsvCsQSQoijZV3BSJJQaSx8q5AJCmI\nNFbeFYgkBZHGyrsCkaQg0lh5VyCSFEQaK+8KRJKCSGPlXYFIUhBprLwrEEkKIo2VdwUiSUGk\nsfKuQCQpiDRW3hWIJAWRxsq7ApGkINJYeVcgkhT/Zm6n5mlwpiidnwaHSLGCSFJ8m6nyzi8x\nHRybQKRYQSQpvs2UJru0D5+f8cRsRIoVRJLi20xm7p/Xd9cfaEekWEEkKb7N9H5Z0/WRIYgU\nK4gkhT3SWHlXIJIUwTnS9dG84hwpARBJinczh85Vu9zxkSGIFCuIJMW/mVvZ3EfKihP3kTYP\nIkkJ0AwixQ8iSVmomf8/OQeRYgWRpAibOefGFFfXJhApVhBJim8z7X7mdcVh8qIdIm0ARJIi\nEqk09aNJH6U5uzWBSLGCSFJEImWmue5dmdytCUSKFUSSIhLpfR2BIUJbB5GkiEQ6vkViiNDG\nQSQp/iIVp/PVXJ4vq5IhQlsHkaT4i/S5R2RMxhChjYNIUrybud/P56Kow7Ny0iNE2gCIJCVA\nM4gUP4gkBZHGyrsCkaQg0lh5V3RyZP4/TrI/1UIlRHJrIm6RhtgdMZYjRHIFkVzLSYNIUhDJ\ntZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzL\nSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0\niCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNI\nUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQF\nkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJ\ntZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkVzLSYNIUhDJtZw0iCQFkUbL\nA2zKIJIURPIMTwtEkoJInuFpgUhSEMkzPC0QSQoieYanBSJJQSTP8LRAJCmI5BmeFogkBZE8\nw9MiZZHC3MVAJM/wtEhZpImSIojkGZ4WiCQFkTzD0wKRpCCSZ3haIJIURPIMTwtEkoJInuFp\ngUhSEMkzPC0QSQoieYanBSJJQSTP8LRAJCmI5BmeFogkBZE8w9MCkaQgkmd4WiCSFETyDE8L\nRJKCSJ7haYFIUhDJMzwtEEkKInmGpwUiSUEkz/C0QCQpiOQZnhaIJAWRPMPTApGkIJJneFog\nkhRE8gxPC0SSgkie4WmBSFIQyTM8LRBJCiJ5hqcFIklBJM/wtEAkKYjkGZ4WiCQFkTzD0wKR\npCCSZ3haIJIURPIMTwtEkoJInuFpgUhSEMkzPC0QSQoieYanBSJJQSTX8CE2JRBJCiIphW8b\nRJKCSErh2waRpCCSUvi2QSQpiKQUvm0QSQoiKYVvG0SSgkhK4dsGkaQgklL4tkEkKYikFL5t\nEEkKIimFbxtEkoJISuHbZj8iLTU8BZGUwrfNfkSaKIlAJKXwbYNIUhBJKXzbIJIURFIK3zaI\nJAWRlMK3DSJJQSSl8G2DSFIQSSl82yCSFERSCt82iCQFkZTCtw0iSUEkrfBN/6TDXkXSyxki\nhWktcvYq0kRpJojkGz69C9rYjw4h0p/STPyDb6eiWUOK8ubaRFIiySYPgzhHiOSKb3CVd7a2\nB8cmECkoCjlCJFd8g0uTXe7Nq8c1M6VbE4gUFIUcIZIrvsGZuX9e303m1gQiBUUhR4jkim9w\n7+z576n0/8+z/5yB7wjP5SyBHM1EtLA942Zs7WAlyFFABOdI10fz6ufxN6wEOQqI9+7s0Nkl\n5pVml0ALchQO/+PCW9nco8iK0497FLAa5CgYa5wEAyQHIgEogEgACiASgAKIBKAAIgEogEgA\nCiASgAKIBKAAIgEogEgACiASgAKIBKAAIgEogEgACiASgAKIBKAAIgEosKpIIX9qSZ01F9xK\nrL3I9VFcNnpVhW5c2PV1wzeJzjyr1BJRV9SrCt04IoUmorU3oq6oVxW6cUQKTURrb0RdUa8q\ndOOIFJqI1t6IuqJeVejGESk0Ea29EXVFvarQjSNSaCJaeyPqinpVoRtHpNBEtPZG1BX1qkI3\njkihiWjtjagr6lWFbhyRQhPR2htRV9SrCt04IoUmorU3oq6oVxW6cUQKTURrb0RdUa8qdOOI\nFJqI1t6IuqJeFcB+QSQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAA\nkQAUQCQABRAJQAFEAlBgFZHOucnKqnlZZp+XM7i9uu0TfT8ac3z4hledGL++b4yqXlz37js+\ns/2nFt8fsb/1Qnwz0KtF5/f01xCpbDqe1Qvg0LzMZ1ZQZW23faKvosYfWRv+8Gx9e7Qz3MCl\nCycAAAcFSURBVHHAa7aHtdw919535gVdGdbi25UBK4h0N8fnanw2x3rLkN3tPTO3eTUU7Wx7\nRWfPmKowpV/4sQ58bgn8+74xmlktTfF5w2u2/9Ry77yeQ9Fd4b0z0KvFtysDVhCpaNusZ6Y0\n1+eriznNquDy2n74RF8aEyqT+YUbad+3RmbqfXdnxfOa7T+1nP0W26W35/DNQL8Wz64MWe9i\nQz0zhamPkWZuEx7m0C4In+jj9/jCJ/x1TFB76NX3jVLP7wvBbHdqOZuzRzc+mRd1ZVCLX1f+\nsJpIlTn0NvDuHMyjDfCJzo09Zc2xpVf46XVod/Ls+zYpO+ua/2x3aynM9WiycmYNn8yLujKo\nxa8rf1htNTjX+2W/dfli/UUypmiuFniG23N92pydfcO3yPNIqLOa+c52v5aiPcE/zKrim3lJ\nV4a1eHXlL2utBo+s3iF7LIpmTy4Rqb7YcPTepZyapX7ybH2TnIuscxrhO9vDWi71rYRZR1Wd\nzAu68p9a5nflP6y0GlRZswXwWBR5feVaIlJ9jvSor5n6hJ/rzerTw/OORLL1meVnNRPM9nG4\nslazLl13Mi/oyp9afLryH1ZaDQ5tt7PZi+LYXKlpA+ZH9xa+T3jeXH5qlrpP+FapvtcJBLPd\nqeXFnFq6mffvyt9aPLryP1ZZDR75oR1a0F53ecy47tJ9svv86N61d59wIwvfLN/VTDLbf1bW\nOWtvN/P+Xflbi0dX/luxLNyL6+fM7tRsH67G/ZpJd0HMj37HPOoe+IS3G8Fm0+oTvj3aO0CP\n74GP12z/qeX9xgwH/irg05W/tXh05b8Vy8J9eHyvkPjem/Yf2fBMZlWf5Fz8wktTD+0qfQdG\nbI9mTEJVfM9u/Ec2dGtplmDV3lGdhcrIhl4t3l0ZVCkL9+HY2SbkfpceXwvCJ/r0jfEJP8jC\nt0f2nct2qXvN9rCWqn1j/t68d4HBOwPdWry7MqhSGO/TZEekdjC1RxXNH6/o6+Ed4xX+jfHs\n+9Z4zmXe7knape432/+rJfe44twTyTsDf2rx6cqgSmkFAIBIACogEoACiASgACIBKIBIAAog\nEoACiASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIB\nKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgwI5E2tGspsGmErap\nzgp4HOuHu1Vrd2MHTD4e/Or8yOMZCSuEj39VYSci3duHbWZr92MHTIn0MK6bsjkJq8zDsdYF\n2YlIB1NWpjqIH7kLP5kS6eC8/GclrIzgidg7EanOrnluutglLc6ESBfnHdK8hFXm4lrvYqQg\nUpk9N1xN/q6FaR5zfTPH+oOraY6ej+aWPVP4ntX3RP1Qe85NJn62NXyX5vtJ4d9lnB+G7ygl\n7JAHmLFpEhDpUB9MH+uFe2oPrJ/LPGvm69geGTw3a6XJr69Z/U7UDbVF824Exwhbp1mah+/S\n/C7jm2nXe/2Enc0t7Ez+ZfsiXU12t/esORaod/GXNkP1zr49Wb2YU52iZwKapf2dqBt6NYfK\nPo/JY7gAtG3qpXl5LdhLbxmX5l5PsEDC7uuf/G5fpKJZltfvoXn96lFvqm6mqFN3aC7q3Mtn\nZr4XX18btU9o0Ry+V8b58iyM0C7NdsEeesv40J4iLZCwav1Die2L9EpI++dxPR1exxZVvQV8\nbtse74Vsrnl7bPGZqBNq3oSfgcRol+aPl1Y5YevnbfUOiOkuysNn2V6fGclym+evgwbbXgTK\nexMh0gLMEkkrYevnbfUOiOksyqPJz9dH+4bJb88D59JU+fuaq/kz0d8kg5g5IqklbP30rd4B\nMZ3j5mZxvvJSmuPzg+vz3/rCans1tbkt0Zmod8jNZQYduudIxY9zJK2EcY6kQO8i0M3e26Pp\n54mrqfP2/Lde4EdTvG+UdybqhDbXmeyZiw1ipq7aNVfhFkjYjat2Chw+B8vl61WTr/x1fN3c\nG6+yz9Ct7kTf0NfLLIJRWxvnv/eRTHsf6WT772gl7MR9JA3KzBxuzcI9PpN3u7ZbqVOzlTq9\ntlWP8jOYuDvRN7S+UW6OeCTmtTSz7siG1zLujGzQTRgjG/T4fZQ8OqvrH2CnT7OMr91h2ooJ\ne0Rwgrt9kZob31Xx+yj576w6h4I3vWXcjP7WTxijvzV4DcXyGdctCAVHesu4+T6SesL4PpIO\n5+dpZ+63UxGEgiO9ZXw9Dt8RVPbmuP6BXRIiAawPIgEogEgACiASgAKIBKAAIgEogEgACiAS\ngAKIBKAAIgEogEgACiASgAKIBKAAIgEogEgACiASgAKIBKAAIgEogEgACiASgAKIBKAAIgEo\ngEgACiASgAKIBKAAIgEogEgACvwDLFzUzeAEfdIAAAAASUVORK5CYII=",
"text/plain": [
"Plot with title \"Histogram of log(gaw$age)\""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"par(mfrow = c(1, 2))\n",
"hist(gaw$age)\n",
"hist(log(gaw$age))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### regresja liniowa"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = age ~ MaxDinks, data = gaw)\n",
"\n",
"Coefficients:\n",
"(Intercept) MaxDinks \n",
" 42.7459 -0.1552 \n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"lm(age~MaxDinks, data = gaw)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\t- (Intercept)
\n",
"\t\t- 42.7458922115112
\n",
"\t- MaxDinks
\n",
"\t\t- -0.155210715969298
\n",
"
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[(Intercept)] 42.7458922115112\n",
"\\item[MaxDinks] -0.155210715969298\n",
"\\end{description*}\n"
],
"text/markdown": [
"(Intercept)\n",
": 42.7458922115112MaxDinks\n",
": -0.155210715969298\n",
"\n"
],
"text/plain": [
"(Intercept) MaxDinks \n",
" 42.7458922 -0.1552107 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"41.9698386316647"
],
"text/latex": [
"41.9698386316647"
],
"text/markdown": [
"41.9698386316647"
],
"text/plain": [
"[1] 41.96984"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"41.9698386316647"
],
"text/latex": [
"41.9698386316647"
],
"text/markdown": [
"41.9698386316647"
],
"text/plain": [
"[1] 41.96984"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"m = lm(age~MaxDinks, data = gaw)\n",
"m$coef\n",
"sum(m$coef*c(1, 5))\n",
"42.7458922115112+(-0.155210715969298)*5"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = age ~ MaxDinks, data = gaw)\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-24.746 -11.021 -2.883 11.427 49.806 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"(Intercept) 42.74589 0.59557 71.774 < 2e-16 ***\n",
"MaxDinks -0.15521 0.02513 -6.175 8.67e-10 ***\n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n",
"\n",
"Residual standard error: 14.99 on 1379 degrees of freedom\n",
"Multiple R-squared: 0.02691,\tAdjusted R-squared: 0.0262 \n",
"F-statistic: 38.13 on 1 and 1379 DF, p-value: 8.674e-10\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"summary(m)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$\\widehat{y} = 42.74589 - 0.15521*MaxDinks$"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAM1BMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD///89ODILAAAACXBIWXMAABJ0\nAAASdAHeZh94AAAgAElEQVR4nO2d6WLjKgyFSZOmnS65fv+nvdmaGFsLYBmQc74f4xoLSbic\nYOTMTBgAAIsJrRMAYAtASAAYACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAh\nAWAAhASAARASAAZASAAYACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAA\nhASAARASAAZASAAYACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAAhASA\nARASAAZASAAYACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAAhASAARAS\nAAZASAAYACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAAhASAARASAAZA\nSAAYACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAAhASAARASAAZASAAY\nACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAAhASAARASAAZASAAYACEB\nYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAAhASAARASAAZUEFIAwBkFs9xe\nOA1CAGAJhASAARASAAZASAAYACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAh\nAWAAhASAARASAAZASAAYACEBYACEBIABjoVU9Pd7y/5SMAAKfoVU9Ffli/9+PQAiboV0l0Oe\nKIo6AaDjWEjjQ6rfkk4A6HgV0p8WsjRR1AmABLwKCSsS6ArHQsIeCfSDWyGhagd6wq+Q8B4J\ndIRjIQHQDxASAAZASAAYACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAA\nhASAARASAAY4FhL+RgToB79Cwt/RAx3hVkj4W+OgJxwLaXwAoC1ehYR/WQt0hVchYUUCXeFY\nSNgjgX5wKyRU7UBPuBJSLBzICPSDJyHFaxBWJNARjoQU74qwRwI94UpI/AGAtvgRUvzmCO+R\nQFf4ERJWJNAxroSEPRLoFUdCQtUO9IsnIeE9EugWV0ICoFcgJAAMgJAAMABCAsAACAkAAyAk\nAAxwJSQUvEGveBISXsGCbnEkJHwpCPSLKyGNDwD0hB8h4S9OgI7xIySsSKBjXAkJeyTQK46E\nhKod6BdPQsJfowDd4kpIsQ3WJ9APboWEHRPoCcdCGh8AaItXIeGtEugKr0LCigS6wrGQsEcC\n/eBWSKjagZ7wKyS8RwId4VhIAPQDhASAARASAAZASAAYACEBYACEBIABEBIABkBIABgAIQFg\nAIQEgAEQEgAGQEgAGAAhAWAAhASAARASAAZASAAYUFVI3x+H699qPRy/1woBQBMqCun0Fp7s\nVwkBQCMqCukYdv9+rj/9fu3CcY0QADSiopB24efx80/YrRECgEZUFFL0T5XI/24JhAScgRUJ\nAAPq7pG+fq8/YY8EtkbN8vd+VLV7O60SAoA21H2PdLy+R9odPvAeCWwLfLMBAAP6EVIYs04I\nANaippB+38PuYxg+38JOLDVgRQLuqPkVod1lrfn8wFeEwPaoWv4+r0PHXXg/Dacjyt9gU1R9\nIXvtHa6Fb7MXsthRgR6o/hWhpP+yMj0EihOgCxqsSJc/T0YrEv4DTNAHDfZIx9P9Z4MQ+C+Z\nQR/4rtr9CQhCAo1x/h4JKxLog36+2VAUAnsk0AfOhYSqHegDV0KiJBO35YkKEgRWeBKSvvrk\nrU9YzYAZjoSk74fydkzYXwE7XAlpfCizKLcGQMKPkPR3RnlvlfAOChjiR0hYkUDHuBIS9kig\nVxwJ6VFlu5faboeo7oaqHWiEJyGNpDMltkgOAxkBI1wJ6Xbt74ksDHg8A73gUUijA4QE+sCd\nkB46em6TICTQHHdCwooEesSjkLBHAt3hT0hi1Q6ANjgUkvAeKcFzieogVaDhUEhLFqGivlj1\ngIo/IS3ZFhX1xT4M6HgU0viQ6bekL77cCnTcCWnJ334o6ou/bgEScCckrEigRzwKCXsk0B3+\nhISqHegQh0Ka/xWkaVtq3+R0ICOg4FFIkSW+4AB6wLmQoi/eYRsDmuFeSMQBgOr4FlL0l5Mg\nJNAO30LCigQ6wb2QsEcCPeBcSKjagT5wLKTo7yM1ltE64fHZ4Ae/QuppKVoniz7GBpJwK6TH\nQnQ7WTmhlFyss+hjbCANx0K6/dnDZFunaIhSpCe8Cumhow6EtM7fWMLfg3KFVyFhRQJd4VhI\n2COBfnArpISqXb2S1zr1Q1TtHOFXSDedCJOt5jzUclngFbjAsZCuhvzjT/UnIzyKvTLuhTQ+\npF5aBxQHXhnfQhJKxNWrxyhXvzS+hYQVCXSCeyFhjwR6wLmQeqnatQkI+sG7kCZ/jSKayOqs\ntp72ffyVDtAC70IKFHl9y1Ks7hZ0jXMhPfYlBd+8W2lPg63SS+JeSPwhr68ZKN69JL6FFP9z\nXCFrDq/03gevk14T30LCigQ6wb2QsEcCPeBcSKjagT7wLiTyPZIwj4UXTctnf+p7JOhse3gX\nErki8UtCdCm2W76QpHrAkrVBnAuJ2iMJm5ToUmy3fGuT6gGbqC3iXkjzgyikyI51UUSqB5T1\ntohvIVHvkQIvpOgdT/zCZ/nrn1QPeNG0SXwLCSsS6AT3QsIeCfSAcyGhagf6wLuQEt4jRW3R\nJcpuUdqJHlrJCPJdD+9C0tcidZWK7Qoz9sD2R9gQ50Ki9kjx7kPdN009ZSfrhe2PsCXuhcQf\nxhYpQpr33RbbH2FLfAuJeo8UT5XHFUVI23+7s/0RNsW3kLAiZbD9EbbEvZCwR0pl+yNsiWMh\nXZ/XNl21M86nwxFuB79CIhVETZSx4DSHxRmvgfnE726EG8KtkCaPbGotwd9jjcecXxfHQrr9\nOZ5salHO1aT0mPPr4lVIUVmbqnsT1r4mpcecXxivQsKKBLrCsZCwRwL94FZIdNVOszbLsAYe\nc35ZPArpuTMKk5PUTrnpRJ3qTW7IyA8OhUQtRakf3kUf8nEnrBOAwJ+Qom1R6h5p2jcrmUlB\nAzsXMMejkEaH1Kod1Tc5mcAfALjhTkjRwpD6Hinum6eCuBPe7gASd0LCigR6xKOQsEcC3eFP\nSKjagQ5xJaT4XRD/Hkl4Z0TZ6ekkvkeCwF4XT0JKXRlSVynrtQVr1QvjSEipe5XUfZP1bge7\np1fGlZD4g2qn+lsO6nmvjB8hpb7PiVcsfl5bvxHCG6aXxo+QsCKBjnElJOyRQK84EhKqdqBf\nPAmJfJ8jtAmvkyh/y2kso25V3G1ihrgSUmxDLDtCG+/BJuX2dDucbhOzxK2QHqvN7URpE/dS\nBgl3QLfD6TYxUxwL6fZnLBquTa/uuafb4XSbmClehfTQTBifcW3C+6at/IK7HU63idniVUhY\nkaZ0O5xuEzPFsZCwR4rodjjdJmaKKyFFtR/zqh1VOifi9gGRUrfFsW4Ts8STkKiJr7elCikQ\naB6aQabUW5IPuk3MEEdCoh4R9LbUR7vJY2FcvWA8NKPDlF4dV0IaH1LbUosNUvGC89CMDlN6\ndfwIiSqj6m2p5e+odB7GE7XD8m2HKb08foSEFelJhym9Oq6EhD3SnQ5TenUcCYksVeltr1O1\nAw3xJKRJGfV2JrTFhzx/0SXKrjFdJAGeuBJSbDNfOoRVRfCQmxsWAzDHrZAmexqqTdlHlG00\nsD0BFI6FdPuTqrKlFdvKSl8omAEKr0KK3vuo74J4D7mSwCscQOJVSFiRQFc4FhL2SKAf3AoJ\nVTvQE66ERL0f0tsoF8SJFFFtS/UHtoonIVHrjQ7lgjiRIqptqf7AZnEkpDDZ+1D7IWWPFLVR\nBkxEpU27AraPKyHND/HkVat2E7u5gRSRb9OugO3jR0hRZe65+MzWoLgtmtfRSyD9jRBlwffC\nG6aXxo+QsCKBjnElJOyRQK84EhKqdqBfPAmp8D1SNLn5E/KS2ibkt5yKshTuS2KnF8eVkGIb\nfrWIrvCLUKod5VxYkcwWpoornDp4tdOr41ZIgd2/xFeiM/5E3z4F/lKiQSZmjjJDpcatmJ8D\nHAtpfBi3TQUSXeJO9IIeac5nZCEkI0eZoVLjoko5xquQno8h07Yw+XgdXeNPpEvRz4GdPqpB\nJlQSK6EOXu0EvAoJK5IlWJEW41hI2COZgT3SYlwJKaoRzWtujzaqGhcZcB7EwpValFMNMqlY\nFVMHr3Z6dTwJSZ/4ipAmlyYTIZoU1AwhtEjmZza7Kk5TdfBMHwjpTlUhfX8crrf+cPwuCBES\nHsW4R7swsZv7S4XvVebPL682XpmKQjq9jdaEfX6I1OLAVEh829hRKqnFhu3zauOVqSikY9j9\n+7n+9Pu1C8fcEM8HstnZdPEJU7sQrUtRp8yJwPcq8+eXVxuvQkUh7cLP4+efsMsOgRWpL15t\nvDIVhTQpJmeHwB6pL15tvDKOVqS1q3aJ6FW7V+HVxitSd4/09Xv9qWiPNDy3P+Oz5/YnZLRR\n/lLhe1FXVppqRW6p+1c9iY1SUUjDfrQmvJ1sQlDrjbDgGKxIai5q20qhMjthPTGlppCG7+P1\nPdLu8FHyHok0JPZIwhZINViCGtCOIrdxp5Uye1mqCsk+RGoljzK3rjqpAe0ocivcK7CYfoRE\nPJwl9PnrOjoM981QZBL9zBosQQ1oR5HbuNNKmb0uNYV0Ol5KdR9vIez/GYXAilTaCSuSLRWF\n9Ls7/9ZOu9uSU/AVIdIQe6TCTtgj2VJRSO/hcDr/8f571tR7UfmbskTVrrATqnamVBRSCKf7\nH+envJIXsk9H903O5RCdkG2pfdWA5Blvp1nrCH2L3KaOoyJdJGFBVSENl683jE7KQvBrkF6w\nSF25qE7kGW+3HH0cZv5a0WFKhVR9tPsZho/b94RO8iZJChHGO5zHycC18X1Tt0pUDMpcdZRJ\nyjiM/LWiw5RKqSikn7A7/gyH3VlJX2/hqzTEpPI2L8CJE5ByMXDmfCdaSIqjTAR/BlW7Lugw\npVIqCmn42j2fqj5KQ0wXn2htGWZtfN/76fMBTw4Yy44wVx1lIvgrCmWdnwEdplRMTSENw7/3\n69+SPXz8lofAioQVqUPqCskiBPZI2CN1iD8hDbOS3ayipla7Igu1ckTGUO2Wo4/DzF8rOkyp\nEFdCCtHO6HYQ2uJehIu4Lx9R8EflZ4aaWGbcivlVdNEHnoQkLCcUcS/en5QHYVFvRUrl1eJ2\niSMhBWmDo+ybyvY0lMUSf+vwanH7xJWQ5ge6jb0k+NMjar1alaBeLW6f+BFSvMIM98Vn3Bbv\neOLPy/mvm78iWSzxtw6vFrdT/AgJKxLDq8XtE1dCwh6J4tXi9okjIZlU7cZlpuSqXWTVR9VO\nGAefg3F2qNqNcCgkahKlCok/YRL5i5cyUStOLP7ToabQIaMnjoQUpAettEc7/kRKxtjOACEU\nf6lifi+IKyGND1SbWmwQChVCMsZ2Bgih+iuGvAZ+hCQUo6cLUrTsjCz5EykXYzsDhFD8pYr5\nvSJ+hIQVKSkUVqQ2uBIS9kh6KOyR2uBISGTVaeWq3Sp2BgihKlbtwBNPQvrb/kSHsrbIHxVD\naOMno900jXLODFUjPzDFlZDuFxdAOVLbyPBZV3Lhcwad4k9IgdwPpbZRjpQ2JnzGlVz4nEGv\nLBbS1+Hymz4o/5rJohCTa1qFTm8jHAltQvjEK7nkFUNADywV0v7+NL8zVZKQVVSMC8QaJLRF\nk/JZcpDbyPCEhd43lUfmEJIfFgrpM+xPl9/0Z3g3S2mQs8KKBDpkoZB24TTcP/OtMpqGmF3D\nHgn0x0Ih3Yq0Q00hoWoHOmShkN7uK9JPeDNLadCyeu6CwuREb6McZbbxk7ts2vMRISM/2OyR\nvnbh0yyloWBFoi7FbbyjzDbrFQnrziZYWrU73OeB/F9ZLgoxvcbvffi21D2N3pbnT6esF+iN\npUK6vkcKB+U/V14WYnKtpGqXWmXT26yrdna1PtCSxUJaBSHEdPEZieaho1kbNVGpK3pbnj+d\nsl6gO9wJCSsS6JGFQhrt7ffi/1NeHmJ2DXsk0B92Qgryf1RulxWqdqA/lj7ave8u/xns1y58\nD4dgtibJWd3mXaqQBn6aUlfUNmshCfkBPywU0vH2n5QPP2E/nOxeyiZkxT/GrfuwZP1oB7bB\n4ke70Q92UyhJSLc/tWKDNdbFBrANFgpp91iRdnWFxJe6w6pCsi5/g42w+NHub490HP7Zfb0B\nKxJwxtJiw/6+w95fZpDZ9+2wRwLOWCqk+1eELstS+LBJaRaCsUmt2hljXrUDW2CxkFYhpfw9\nqoJPLy2ZznpJXC2nm6lJcFQUAzJfDyMh/Rzt3sYyIZ4Xxx/81isS1ZeMkefCLJclMbBiroiF\nkH4/3iy/1kCFGF+blOieJwZ7JKovFUPwbrZVEhwVxcAebk0WC+n076yisP8yyocKMbkWV+io\ntiVCGh+oNrU2Z1a8ExwVxUBVcU0WCunfrWpn+6/aiVlFr2vidzfL3yNR74KoGIJ3s9dJgqOi\nGHjPtSpLhPT1fp6zu+OP/a8GK5LsCCtSdywQ0u6iou9hjV8N9kiyI+yRumOBkMLft73rCglV\nu9IYqNqtiL8V6bkLGp9EB2G6qJcog7iNdxHnspyycRT5Awsx2CN91xZSZEmhmque9Ih5zsHW\ncVe1mxhOtkrl+5fHYiJ7ECz0vmC7LBTS33ukQ733SLGhWUUtteLHu0BV7JVZLKSh9jcbIrtJ\nJU2ZyuqrmZCwpnEu8J7mpbEQ0lD3u3aRIVYk0AVGQjIGeyTgDOdCQtUO9IErIVHTNDyWEu4V\nzq0t005KjrWwllGZP79i9pu5LyFRn/j6ikRarLKqWK9IZf78rot+Mx9cCSkQe5BHG7tHeqxA\nih0fIzlp4z1SmT/rLOrhN/MLroQ0PlBtvEX8S1qn8mZdtSvz57d26DfzC36ERL2n0d8jRe+H\nBDs+RnLOC/ra+fP7Nstv5lf8CAkrUpMs6uE38wuuhIQ9Uv0s6uE38wuOhJRetYushKodUSNK\nqByx15OrTom1Kc9Vu5IU+si8EE9CIn87tzZJIk+LIT4IwpRyYy1SJ4K14Ex62VKkCQjJnIJP\n4echJD4iUHZ6X95iSdyNUTRE3/dlK0IaHdIn9DCz0ze8ywsVvjfVSRQN0fd92YSQoip4SBQS\nVW7VS7C8RWr51nmZN4WiITq/L5sQElakzsCKtFKXtUNgj9QX2COt1GX1EFLVTuuktum9Uvvm\n2TkGVbt1uqwSgi1rJxeAKTu9L2+xJG4NKsYtCuVXRp6FRK0+NT7T/K5Irj/xe8etkKj9UI2n\nbL97JN97kN5xLKTbn7GQxod18Fu1810V6x2vQnroKIzPxtfWwe97JOfvaXrHq5CwImWDFWlN\nHAsJe6Q8sEdaE7dCQtUuG1TtVsSvkIT3SJFBYQZ8X7xHAnMcCynqQKxPSz6Ahb7LVySwQbYh\npMfjf1TDK98SCH2X75HAFtmKkOaHJUUqoe/yqh3YIpsQUly0G+67pehaiT9BLQveI4FNsgkh\nYUUCrdmKkLBHAk3ZhpBQtQONcSUkaprq75Hy3vvoL6RUf6qaen/fBPLxJCTqE19fOvJWkMwY\neQHL/Kl2oAMcCYnag6RsZnL2NJkx8gKW+lPsQA+4EtL4wLeRlxKrbJkx8gIu8gf6xo+QqPc0\n+gufwE7HVH+p74fUgGX+ICQf+BESViTQMa6EhD0S6BVHQnpUscZV5kll6/bz889ZEU3oG8XQ\n2oT8+q3aWdcAX62mKI3Xk5BIgcxk8mwbi4YySBZN4oSxFpL1RLUWprnQO0ccrysh3a6Nn6Ae\nJwPXltp3YlCStPGjnTXWcVuNoxXyeD0KaXSYCmneltqXMMhN2rjYYI113FcrhsjjdSek6eIz\nEsNDH3x5ge0bGRRNjsi54GJJjCVYx201jlYo43UnJKxIpWBFWsbGViTskUrBHmkZW9sjTYpj\nUSVFLZsJfSODsqzV8MtjLME6bqtxtEIcr0Mh/e1ubofoJG6Lzfm+lHO1TU1Mt6uOcF8M/NWg\nrXCl6A6FFH0wUEtM/MnBf46kfqJu85O8jyzy6Dhnf0IKkxLd7BAZCE+2/JUyu1Ss/XnOIo+e\nc/YopNGBqpRNhTQ+sI5SAxrQR7Wrjyzy6Dlnd0KKyvnTVWe8Q4k/vaiND3elzC4Va3+es8ij\n65zdCQkr0payyKPnnD0KCXukzWSRR885+xMSqnZbyiKPjnN2KCTyXZDaFvclHFEGZBv/q0z9\nJfcxGfrIIo9+c/YopLsNuwiRC1N0ibfTP/P6W+FAB7gV0mMxGcaHgWmLOgl2VCcqbk97LtAD\njoV0+3NeoRPKdQkVv3knKm5PVUDQA16F9NDRaF0a7if3n+fzNXoRQdnpbyp4C71vnh1whVch\nYUUCXeFYSNgjgX5wKyRU7UBP+BXSfYP03CYFsS3qFJ/wBmQbLwLKn2C3hCIX+thek9R7INn1\nKaT/bshpEMtO6sJEWCe3qf5qLDhFMVLH+2qYPEl0LSRJTY8P/9vJqE3fKg1z6+S2BH/rb4GK\nYqSO99VIvQeyXZ9CuoUQ5cRX7fTi3cBe0dtS/a0spIIYqeN9NWyqrT0L6QqjpoeOojVodC1e\nQIjhR9bJbZRF1MIHtINPIrNTkaONkXoPFLvuhXRjLiesSFiRbHiRFWlEpCbskbBHsmH7e6R5\n82UsYzkxVbtbC1lEG5ddXrxqd/25RrK9k3oPRDtPQhrN0qmaxibTCc1qx1pIQyTg/FHnUBQh\n6lRL8w5IvAdbEVKYPbLRhYipHeUiyYBsoyzoNOUhtsZJmh0h3zFXQpofJosTa0e5sC42CC46\nxEmaHbGVYsN0RbjXGu5nhJzm434+001PKAOyjbKg0ux9hjpJsyOUO+ZHSNyKNGqblPXG5oQL\nrEhD/2l2xFZWJGKPRD+3xosT9kg0TtLsiM3skSbVuLg0N7VjvxCxZtUu0aAPnKTZEVup2j22\nRNFBbKO+EDG6E9Rt0duEmxnv3PjhqRM4GsdKqLciz8MLII3XlZCEDgLM4mS/IqV+xut2Uf6q\nPwOKQmFNG1FVSN8fh+utPxy/bUMEct8UHcjF6XagHLFtlAXfV0xWsUj1Z0BRqIr5OaCikE5v\no4/ZvWkIoZIXHcZq+s+6apdaB9Pt+GLIShSV8FD3G1NRSMew+/dz/en3axeOhiGixSJQ61L0\n6+bLes8yBNdGWfB9hWTFut/wHEeNiZqa+vJO26WikHbh5/HzT9hZhkhdkcaQWyesSCt32iwV\nhUTNTqMQCXskek8zVRP2SCt32izbWJHiMhcJ32kg/mYGbUec8XZqsqnDUf0ZUBSqYn79U3eP\n9PV7/cl6jzSMd0ZhchK38Z2mO6eRedyXvxTHTUxWyMx6mgr+ii5BRk8qCmnYjz5m306mIdiF\naILQ6dZGlPXoUPyJ+kGtZ0Y4N6DMn3UWG6WmkIbv4/U90u7wUfs90uOE6xRt8NlXuLT59ETZ\nOlD5LdlzpVLmzzqLrVJVSKuFUKt2tJCovs8TWk6suV7WE+LSQlIcZVLmD7W5NPoRUuJzEd31\nz8Mw3nnM2qLpEFfhhrvdtG1e1htm5lzfhGQF88i5AWX+rLPYLE2EpP5WuliRRubRzokzx4r0\nymxFSNR+iGrjOiXsc6LFCXskEFFRSHqZqjwEWQgjEDrxbRHzKnl6XylZ3i73Xmhxq/R6OSoK\n6XtnJKSo9/0kOuhtVF++bRaeKZLrffmc1YEKbakWZYKoJyPPgq35aHc6hP31jeyyRztqFYgv\n8W1UX8GfHJ74flHSVFhil5NfadxW9J6fSN090r8Q/g0LhRTIfcnoktim7Gnivmr4gahD6INL\n3HVQdvn55cdtRe/5ydQV0vC7D4fTUiGNDlTpayokvk3zp4Z/MC/rJQ4g0640v5y4reg9P5nK\nQhqGj7D7WiKk5zPY9OSpmcC0hfHvKlqxSH9q+MkV6QsRKR50u2X5pcVtRe/5KVQX0vDzpj8H\nu1uRRk2qnLAi0fSen0x9IQ3D+5b2SPSV/wQ5YY9E03t+Mi2EtDAEWWW7tcRlOKKN6kv6G8V6\nPi1OezGJPS4xaqJ7KwPlYiT1EsbWEWTmS7KsOcKNCCmT2NF0dj1PiU5kG5XLo3kmJ36qCwMd\nN4ou+EvkONQsKkLksyTLqiP0J6QgPZ5Rj3Hqox3nPOVRkepLPaHMX+EWPdotuUSNo/cHqSVZ\n1h2hRyGNDvEGld438W3jvoTzZH983wnMNyISBmpwicyveyGND/X6FkSr0sUwxPO5bBjdq3jx\nma1BcVvUN7rRcdvDQ5Dbor5B+/0lVsnJ/JZcosbWu5CWZFl5hO6E5HpFGl3R5YQVCSvSUmQh\nxUvD7NDlHomOIaoJe6RlWWKPpISIijGhCMIR5XwgOpFtVC6JAxh4OQmOii6R4+DT7IIlWVYd\noUMhDdHduZ9Eh8w23nmyPyoXNecISk3CNBD85Y2td5ZkaT1CyZ9HIQn9SqA8ZDpP7cvb3dsi\nORn4U+4XyEG8p5sSUkjeI6n7HM555p6LcqvGjRen5f6ACfI93ZiQbn/Gm+q0trEHZvKq/lL7\nzu2INqkQUeIPLES+p1sS0mOOz9YMoS26Mc+HJcY56W+4n2h9eTu2jVZTkT+wDOWebklI21qR\nRm3Et/UK/IFlvM6KxOxf1LaZB3lfQvlL7cvZJbTFXy8q8AeW8UJ7pIGqqKlQHjKdp/bl7VLb\nqG/rZY4DFCLeU49CikYTD+12dm+LDkIb7zxuK/Kn50zF4O0u/Dd51sscByhEun8OhSR8uhPL\nhGCe+qkt+BPiCi54g9T8Lu2TZ73ccQBT/Akp8PuDx4f6rI0yj+0SAwo7EsGfGirk5Te6JH5d\nLy8JsACPQhod4koKLS7OPDZIDEj2Spj4Sig1WcE8EGU9PQawxZ2Qns8905PnfA7TNso87psY\nkBfVJX4AABfcSURBVOxFxRVc8DHCeK4LnZhxyHJKHS8owp2QsCLJdryasCKtiUchsfuIV9wj\n0XaUnLBHWhN/QhqEyhZVPePNU6tYgj8hruCCN0jNL8luqqbU8YICXAkpPD76nweDttQYsQXR\nK+5LudU82Nk9IL4R0SueZe5JSMLKEBZAxRDsqF5UXz513oM0XjWGRHqRvCG5g+oKR0IKCXuf\nMD1JaaNisHZUL7ovlzrvQRqvGkMl9V/5b0XRoLrBlZDYw+SkpI2PQfWlhcQa8MkKqI6yhXQ9\ndKumokF1gx8hPR+MZmfRYhGINUhoi35x01VnbhdnQeQXiPlAJatOGMpOiKES++tPTqn3pVP8\nCAkrUkoSWf76UhNWJHsYIcXzMFon4iUkr42Kwdp53iPRnXqRE/ZI9tAh/qo6t4etqHgVFjB6\n8AuSozgun9/EbZT6/IS5AaNcUmPodzX2F/WN1ER5zYpURsJ96RdPQporiJnk3KV0weniYtLj\n7MZdeA+kJ+oeqKIWvFJn95PonZPQdyXWj7AeroR0u6Y9dkUGwpPR1C7ncS/l0U61U4aYapf6\nMETdK+ppE18vKsGjkEaH6eTg2sr6Ep1It0vs+CGmCEnzlJgfcRLLKS/SK+JOSNPFJ/pcHZ5t\ngfjdU32nC9Js8k4/wbkplWknTMpoHKpd6vSOraMz9uS/yeoEIbG4ExJWpBxPifnxJxd6Ket1\njUchxUvI7WQg2ihNUH1Zf0QnYXpvZY/E3APIScSfkIZAoF/iDco6JSYm2KUOUbcTLHjr6Iw/\nia2hJg6HQhrtbsJzKzG+FBksaiMCknF5O3UAcRs1Dv1WJELFUE+ItrXklDqavFHXwaGQhE/P\nkAjVl/KgxlD7lo2Db7NjqXd7NRXduF7wJ6TAP88Hfe+j7wXyYih9y8ZBGJhj5N1QTkU3rhs8\nCml0iE6Yic+3jfsSzpNj8H3LxkH5s8bSu42aim5cN7gT0vNZaHrynOOzNShuo/pGPwt2UQy1\nrzREfhyEgTkreF8op9SM1r0vxbgTElYkG1byvkBNWJHskYUULw3Pk4FYi5i2ed+J89QYSt+y\ncRAG5qzqvUhO2CPZI4ZIragJUH0pD2oMtW/ZOPg2O9b1PhSoqejG9YIrId1vX3SIb2nURtkJ\nbUUx1PwoCz1G5I88K8HaXwo5ckrNqD8Z+RJS4KEs9F6EeXIMPj/BztpfHtb+0uO+wBciHAkp\nSHufIbEtdd+kxKCe0HU7a395WPvLjrtpObkS0vwwnRzL29Ji0BOfP4wt7PzlYe2vLO5W1eRH\nSNNP0vE2ZLKocG1U3zD+PafGoCZgfIWy4/Mr85eHtb+yuHe2Jyc/QsKKxNil0seKNOK/LcnJ\nlZDC7IA9UjrN90j05Y2oyZGQhsBDWei9CPPkGHx+gp21vzys/ZXFpXEvJ09CGm1rnof4VxS1\nUXZCW16M1Pwoi0x/qp0eY4m/5aTG7V1N0h1zJaTYRvvEF1A9CG2UBRU9L/MldkIW5t6Xo8bt\nVk5i5m6FFPQ9SOp+KMlrxp5G2XyoBpl2VC+9b5n35STG7VBNcuaOhTQ+jNumE59v4zxIbZSF\nYJeY+RI7qleKkEq8LycrbldykjP3KqTn49m0LRBrUNw23E84D1IbZRG1BG2m8B7K7KheIWFZ\nLPG+nIK4nahJydyrkLAiib02siKNaC+nba5Iwm4Ge6Q0IZV4X86iuE3VtKE9Uhg/qMW1qVmb\nyNPdtAozabv+HLdRvaIrvIHq4flQlmMnZCF0UtNcieVxW8lJzNyTkBIEEk3826ijaRXdC+rG\nkKKh2tT8hNHxBmp+uovRsMVOapprYRO1hZqkzB0JKRQ9svGXYrthbk0+JlG96PzYwfEGan66\nC57UcXii/c7pD1dCmh+mk4Ozoy5Rm8fUGLSQFAPSjr+UapeKcF9804Wa/Ahp+kn63Bn9tQ33\nk7F9dMafxDGivmGyTMx7UfnxM5T3oOenu+AR7ssmaCwnP0LCipTkgmezK9KIdmpyJaQwO2CP\nlM4W90g0TQoRVbrYhAgqkd1AnAl2Ql/en5CfMDreQM1Pd5Eat8iFIyqryZOQRlui56GsLfJH\nxYjOqDbhpCiGeiK5SESIu9y5Afq9yqaanFwJibLkVxABqm9qG+8i1Z80gry+eaT6s46bStn9\nS+C/CnJyLqQg7Wmy9lKUPz5G2Z5LH0HalTJS/VnHTaXs/qWzrprcC2l+mE58vm3cl/LHx6Bc\npPqTRpB2pYxUf9ZxUym7f7msJSffQno+VI3/nK9BcdtwP4l9zP3xMSgXqf6kEaRdKSPVn3Xc\nVMruXxkrqMm3kLAiZYAVaYKpnNwLKZ7Ds7WIaZv3pfzxMSgX2CMtY+09Eo2VmpwLaSAraipU\n39Q23kWqP2kEeX3zSPVnHTeVsvtnwnI5eRRSeKwy4XESXYoMyLbIUWpfqhd1ktpGnhEDVS+l\nTjVruzIXeeO1lpHgT1WTlItDIQWC+BJlRxiQbvNiCImpzrWbIFHkzyBuKqn3uTp6dF5OYl9/\nQgrk3ie+NLMTtjFTtzkx+MSER30hiVSK/BnETSX1PlcnNTqlJrmvRyGNDtNJHl3S2iS3aTF4\nD1MhpSWRSpE/g7ippN7n6uRFj+Uk93UnpGhhCJOP5pFJvIBEbYIKiL5CDD6x2IByvmQqFfkz\niJtK6n2uTkn06eK0FSFhRSr1hxVpQXS9EFGQTH4XyxDYIxX6wx5pWXT5/+70J6QhEMSXKDvC\ngHSbF0NITHWu3QSJIn8GcVNJvc/VWRL93peWk0Mh/e1abofoRGiL+xIn5KUif9RvKjWu0Jbq\nL7FTcq9UfwaXKrAk+qjvTE0ehXS3ySPqRJyQn1WUueqPcsR71eOuxPIYNbLsm2VfiOhDSCHe\nv1B7GmWPFJ1kbG1Uf8pjeGbclVgeo0aWHnAvpNuf8aTk2gbSbm4wndCKue6PzTw57kosj1Ej\nSz94fbR7aGa2BlFtd/vnM9j0ZHIW/zw2V/0FbX5lxl2J5TFqZOkIr0LCirQQrEi2OBbSfN3B\nHikd7JFscSWkqEYU8nl0ijzM/T1CUX15F5QBlToZd2Y9c8HfilSiTnqMFHfLPBSOo0c8CWny\ni3tO7yE+sEKSVED2jdpicREuBCHNtRNfo4Yq3qCSOTxPYuEsXq4CgyQ6wZGQQuKjxMNOeNzj\n/Ol2/CWqb2bqqRT5E8bRii6SsMGVkMYHoXOYH6aTiPNH9027RNrlpZ5KkT9hHK3oIgkb/Ajp\n+QCl9J184sYPfk8Tyl/cl7KLzqiTQEyO1NRTKfInjKMVXSRhhB8hYUVa6A8r0pq4ElLaAzX2\nSCmdutiedJGEDY6ENKSWeIIK70+34y9RfTNTT6XInzCOVnSRhAmehDTE9/x2JrRFB6GNihFd\nomIIJ6ltS1BdpN6rxnSRhAWehER+ovJt1ALBXyFjCHH5E95AiGGNkDNYA0dCCsQzvtimbGPi\nvlQMPm7qHik1hjVCzmAVXAlpfphOGK5tUO2oGHxc2p9iIMSwRsgZrIIfIT0flsZ/xmejtnh9\nGO5tw7MtEEKKY/BxY3+Ec8pAiGGNkDNYBz9CwoqUAVak2rgS0vy5H3skGuyRauNISANZieLb\nhCIa1ZeKIcTlT3gDIYY1Qs5gDTwJabT9eR7iCRK1xQfCBTW5hDbBH2Wn+ksl0wV/XzKB9iZI\nN8STkAw+8QOB2pfqJNwE64//siGuE/elEW+IIyGF5XuQyEVq32lcZb+hGmRSOsQ14r408g1x\nJaT5IbMqNulLzVDNn+BdDV/EkiFax31p5BviR0hxBWq4LyrRtehnYsCRi0AISfAXL0j8/BLC\nF1E2xOXhrcfhHuWG+BESVqSkGFiR1mIrKxL2SEkxsEdai83skQaqbFZW0uLrb0Kb0Cs1fBFl\nQ1wn7ksj3hBPQvrb1kQHamhxW3RW1JeKS/WiDPQYKpkuUr2rdpDRBOmGeBISuTKoH9fRmUFf\nNTPBn+qoIn1ksRkcCSkQe5XHCWU3PzPpy2Wm++Pb6tNHFtvBlZDmB3qiCuZGfanMdH98W336\nyGI7+BHSdJUY70bibc34GJ1FLsr6UjPvkZHij2+rTx9ZbAg/QsKKZEofWWwHV0LCHsmOPrLY\nDo6ENFAlt0nt6fozWXm7tZB9w+hZj+wbnzw90ZlROUtts+tMWyp8Xyrn0ihypHae1vfKxKrS\nxSjEeMaTk1cVVxqziOMTNQaZ87RplrNgkQffV49rFamdp/W9csGqdFkhRCAep6i2sTXzaKc9\nualxJzGSPJCPj5medO95ca0itfO0vlc2WpUuK4Sgpn/qpp/vmyKDtBiaByluqifde15cq0jt\nPK3vlY1WpYt9iMd8DuOzedvYerYgzdcl9barMRI9xDmXedK958W1itTO0/pe+XBVuqwQAitS\nive8uFaR2nla3ysbrUqXFUJgj5TiPS+uVaR2ntb3ykar0mWNEOPiWRDaiCsSRXGjK6kehF6p\nnnTveXGtIrXztL5XLliVLquEuN2k+FZFbdEhs42IlByXT1bwp48tFb6XHtcqUjtP63tlYlXp\nskYI9ZNXgLLjvcZtggWbUdmHY1Enx/5cU1VI3x+H660/HL8Xhwj6XkDYD1F2nNe4jbfgMyp7\nXC/q5NifbyoK6fQ2+tjeLw3B12TiK5RAiBOyjfdHWYhC4pIVKOrk2J9vKgrpGHb/fq4//X7t\nwnFZiOejGHNluiCN1ozhfjK2i9oir3EbbxF4IfHJChR1cuzPORWFtAs/j59/wm5hCKxIufTu\nzzcVhUTNzvIQ2CPl0rs/37hdkQa+ZhRUKDvea9wmWLAZCckWjbCM3v25pu4e6ev3+pPBHmn4\n25Q8tz9hciU+GNiRZ0Quqfmljm0JmXEXOH9xKgpp2I8+tt9ONiH0VYW/FFSEiOoV3pHgPNki\nETNHQKGmkIbv4/U90u7wsfw90t1Q3efwl6Z9ub0UE1G5MvGX5CHdIhEzR0CjqpDsQ+iVN/4S\nbUBcEiLquVBCYp0nWyRi5gho9CMk9ZmK7PPX9Xn6fHAbpmfUyXRBClN/ZETiEhU3EELiPaRb\nJGLmCKjUFNLpPYT9192J6AUrkmKRCFakalQU0ml3XWwONydWQsIeSQB7pGpUFNIxfJ7V9Lm7\nfs3OSEjxA2GI2gbijDoRECKqV3hH+uNr3gNuDUdAoaKQdreOv7u330IhUXPiua15HvS21L5F\ndtFZas76SIsQ8lvuzzHm46gopL/MT/t9mZD0T3duZZlCWUuJZ/lLuBGsi1UxiFQv2XWxH0dF\nIb2Fv5ewb/sSIQV1vxHIfQ6396HaxLip/qSRMf5qbGMMItVLdl1WGEdFIX2G9/tPv2FfJKTx\ngWqjiw18G+tWiJvqTxgcFbeKkBZHqpfsuqwwjopCGo6PxL+UZZW6+HyA4toec3y2ZsRtw/1k\nGKZtZC6RnepP/e1Q/mrMzdT81nXRBWuMo6aQhp/D30+/71iRsCI1w/mKtDAE9kjLwB7pge89\n0uIQk1LL9ee/ttsFsh5GEPmL3T6f2sIkbqq/qG98IvjjzXNhXcSRin0vz7A99uPwKyR9dt+M\no8mqTnxdIPHl1L6zgTwOunnmveNdGMwdAxddYD4OR0IKuY9x8178yTQGa0f1Su2rjko3VzFw\nAQpwJaT5YTrJuTaqHkDtONVOwj5V76uOSjdXMXABCvAjpOfTz/jP+boUJp/xo178SRwjjGcj\nFZeaqHpfcqRaSpkYuAAl+BESVqQksCK1wZWQ5nsV7JFEf6AajoQ0xPWooEH1UktklAvBX2Zf\ndVS6uYqBC5CPJyEN8QS5nYXHMhTENsoFNeHUTmSv1L7qqAw0ABm1wJWQMp3goxlUY7tCCtgs\ngHpsWUjjAwCrslkh4YUKqMlmhYQVCdRky0LCHglUY7tCQtUOVGTDQsILFVCPLQsJgGpASAAY\nACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAAhASAARASAAZASAAYACEB\nYACEBIABEBIABkBIABjQqZAAcEbBLLcXjovYT7rIAkk86COLbCCkLrJAEg/6yCIbCKmLLJDE\ngz6yyAZC6iILJPGgjyyygZC6yAJJPOgji2wgpC6yQBIP+sgiGwipiyyQxIM+ssgGQuoiCyTx\noI8ssoGQusgCSTzoI4tsIKQuskASD/rIIhsIqYsskMSDPrLIBkLqIgsk8aCPLLJxmjYAfQEh\nAWAAhASAARASAAZASAAYACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAA\nhASAARASAAY0E9JxF3bHU6voZz7fHgk0zeX7/itol8TPewjvv42TOI1CN58bBbQS0v76j/6/\nNYp+5nhNYHdqnctpd/sVtEviq4c78bu7ZfHbNIsFNBLSd9j9DD+78N0m/PlTOLyfZ85neG+d\ny+H2f4g0TGJ3jnw6hGPTJN4v8c+fbs1/H6U0EtIxfJ3//Bc+2oS/zN/r4TKLm+by7/6f8bRL\n4t91Cp/CrumdCJ38PoppJKRDuKzhP+HQJvyDyy+uZS6/YX+bQu2SeA8/fz82vBP3B9yLnHuZ\nG3k0EtLoA6glp7Bvm8s+/N7itkviLQwfu+uDbss78XF/tPvoZm5k8tpC+rw8RTSdPv+G1kIK\n4XDd5jdN4vyruFQbdp+NsyjnpYX0uzs0zeX6+NJeSJdiw3vrteDjWqr7GHqZG7m8spBOu33b\nXN4uNef2QrrskX4v5eaGv5XPy6PdWc6fncyNbBplu+vhZu3f2ubyfi1P3eK2uyGjedvwt/IW\nLpu000XOXcyNbJpW7X5bVmZ+3/a/bXMZ/2/07W7I6EVAw99K6CKLBTQS0sf1w/jrWqppw1fY\nt85lLKR2N+QW+fdyOxr+Vm7L0PVtVvu5UcKrfrPh96Gj1rm0/mbDeXd0uuxO/jW9E8dw+XLd\nsfH3KxbQ6kH07fpJvNcNV+L9uRg0zuX+UNMuiY9n5IZ3Yt9FFuW0EtLty76Ngg+jx6rmudyF\n1DCJr/1f5JZ34hm69dwowldpBIBOgZAAMABCAsAACAkAAyAkAAyAkAAwAEICwAAICQADICQA\nDICQADAAQgLAAAgJAAMgJAAMgJAAMABCAsAACAkAAyAkAAyAkAAwAEICwAAICQADICQADICQ\nADAAQgLAAAgJAAMgJAAMgJAAMABCAsAACAkAAyAkAAyAkAAwAEICwAAICQADICQADICQ+mJ3\n+Lz9X+u/n4cdZ3T7vwbfLv/r6qhtYM/A+uCG98VZIO/XH94DL4a//7Zz9ztuiy1Wyg8w4Ib3\nxXmhuS1EuzdJSJc/f/f8f1gMIdUGN7wvQjiGn/Px53xUhHT577+/FAtQC9zwvgjhK3yej5/h\n300MX4dw+y++9+H7/Of35cnvTyZft5PTWzhc20L4PYTdx/BncQwf1/+zPOw5wQErIKS+OMvi\nrIphOITfqxg+bruhs5J+w+WZb7c7PYV0Cm+Xk8Pl+k1Iu4vxx93ieHn0+7w5+Gw3pNcAQuqL\nswLeLr+Ts2quYgjh3zDcFqfPs0I+LqfPB7ebevan8Y+fN3XddTTsLk+K/y5tYE0gpL44K+B4\nfoa7PMGN9jm3H/fh87paTYX0Hf94++muo8uzYtUBvCoQUl+cFfDvvvLc5fL79bG/l+nOj2i/\nd6OH9d/J88f72nQX2PH86PfzU3kULwiE1BdnFfyel5L9WTF/y9CV68XjZa80PIV0seSEdN4u\n3R7nPnaTN05gDSCkvrioYBdOl8LCVRbv4e3z65dZkf5dhMUI6fvnur268HV8wx5pbSCkvrio\n4D0cH0Xu6x93IR3Oe6T9n9GFt8vTGyOkS8FvF7kFa4Ib3BeXGf8vXBeTu5C+h5/bHumy/nxc\n69jRNxtYIZ119nH54x+qdhWAkPriooD7I9z9XdCN7+G0u75Hul0ZfdeOF9L54e50VWW4Fx7A\nekBIfXFVwO76UHaTxXsI+++vcDj/cPtmw/5PSPuPZw9SSOf163D/ZgN0tDYQEgAGQEgAGAAh\nAWAAhASAARASAAZASAAYACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAA\nhASAARASAAZASAAYACEBYACEBIABEBIABkBIABgAIQFgAIQEgAEQEgAGQEgAGAAhAWAAhASA\nARASAAZASAAYACEBYMD/sZtJ+KOJRVkAAAAASUVORK5CYII=",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot(gaw$MaxDinks, gaw$age, lwd = 2, xlab = \"MaxDrinks\", ylab = \"Age\")\n",
"abline(m, lwd = 2, col = \"red\")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = gaw$age ~ gaw$MaxDinks)\n",
"\n",
"Coefficients:\n",
" (Intercept) gaw$MaxDinks \n",
" 42.7459 -0.1552 \n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"lm(gaw$age~gaw$MaxDinks)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
" sex age ethnicity alcoholDependence AgeOnset \n",
" F:718 Min. :17.00 Min. :0.000 Min. :1.000 Min. : 0.00 \n",
" M:663 1st Qu.:29.00 1st Qu.:6.000 1st Qu.:3.000 1st Qu.: 0.00 \n",
" Median :37.00 Median :6.000 Median :3.000 Median : 0.00 \n",
" Mean :40.04 Mean :5.728 Mean :3.495 Mean :10.17 \n",
" 3rd Qu.:51.00 3rd Qu.:6.000 3rd Qu.:5.000 3rd Qu.:19.00 \n",
" Max. :91.00 Max. :8.000 Max. :5.000 Max. :66.00 \n",
" MaxDinks packsDay \n",
" Min. : 0.00 Min. : 0.00 \n",
" 1st Qu.: 6.00 1st Qu.: 0.00 \n",
" Median :12.00 Median : 5.25 \n",
" Mean :17.43 Mean : 15.16 \n",
" 3rd Qu.:24.00 3rd Qu.: 21.00 \n",
" Max. :96.00 Max. :193.00 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
" sex age ethnicity alcoholDependence AgeOnset \n",
" F:199 Min. :18.00 Min. :1.000 Min. :5 Min. :12.00 \n",
" M:423 1st Qu.:30.00 1st Qu.:6.000 1st Qu.:5 1st Qu.:17.00 \n",
" Median :35.00 Median :6.000 Median :5 Median :20.00 \n",
" Mean :38.08 Mean :5.773 Mean :5 Mean :22.58 \n",
" 3rd Qu.:44.00 3rd Qu.:6.000 3rd Qu.:5 3rd Qu.:25.00 \n",
" Max. :74.00 Max. :8.000 Max. :5 Max. :66.00 \n",
" MaxDinks packsDay \n",
" Min. : 0.00 Min. : 0.000 \n",
" 1st Qu.:15.25 1st Qu.: 2.138 \n",
" Median :24.00 Median : 13.291 \n",
" Mean :27.31 Mean : 20.533 \n",
" 3rd Qu.:35.00 3rd Qu.: 27.688 \n",
" Max. :96.00 Max. :193.000 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" | sex | age | ethnicity | AgeOnset | MaxDinks | packsDay |
\n",
"\n",
"\t1 | F | 30 | 6 | 16 | 24 | 17 |
\n",
"\t2 | F | 31 | 6 | 30 | 12 | 16 |
\n",
"\t5 | M | 28 | 6 | 16 | 40 | 0 |
\n",
"\t7 | M | 60 | 6 | 38 | 24 | 42 |
\n",
"\t9 | F | 38 | 6 | 18 | 75 | 30 |
\n",
"\t10 | M | 40 | 6 | 33 | 48 | 0 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|llllll}\n",
" & sex & age & ethnicity & AgeOnset & MaxDinks & packsDay\\\\\n",
"\\hline\n",
"\t1 & F & 30 & 6 & 16 & 24 & 17\\\\\n",
"\t2 & F & 31 & 6 & 30 & 12 & 16\\\\\n",
"\t5 & M & 28 & 6 & 16 & 40 & 0\\\\\n",
"\t7 & M & 60 & 6 & 38 & 24 & 42\\\\\n",
"\t9 & F & 38 & 6 & 18 & 75 & 30\\\\\n",
"\t10 & M & 40 & 6 & 33 & 48 & 0\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"| | sex | age | ethnicity | AgeOnset | MaxDinks | packsDay |\n",
"|---|---|---|---|---|---|---|\n",
"| 1 | F | 30 | 6 | 16 | 24 | 17 |\n",
"| 2 | F | 31 | 6 | 30 | 12 | 16 |\n",
"| 5 | M | 28 | 6 | 16 | 40 | 0 |\n",
"| 7 | M | 60 | 6 | 38 | 24 | 42 |\n",
"| 9 | F | 38 | 6 | 18 | 75 | 30 |\n",
"| 10 | M | 40 | 6 | 33 | 48 | 0 |\n",
"\n"
],
"text/plain": [
" sex age ethnicity AgeOnset MaxDinks packsDay\n",
"1 F 30 6 16 24 17 \n",
"2 F 31 6 30 12 16 \n",
"5 M 28 6 16 40 0 \n",
"7 M 60 6 38 24 42 \n",
"9 F 38 6 18 75 30 \n",
"10 M 40 6 33 48 0 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"gaw2 = gaw[, -c(1:4)]\n",
"summary(gaw2)\n",
"gaw2 = gaw2[gaw$AgeOnset > 0, ]\n",
"summary(gaw2)\n",
"gaw2 = gaw2[, -4]\n",
"head(gaw2)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = age ~ ., data = gaw2)\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-33.092 -5.074 -0.663 3.734 31.776 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"(Intercept) 17.52823 2.51814 6.961 8.69e-12 ***\n",
"sexM 3.92909 0.74233 5.293 1.68e-07 ***\n",
"ethnicity -0.15644 0.37556 -0.417 0.67715 \n",
"AgeOnset 0.69478 0.04223 16.451 < 2e-16 ***\n",
"MaxDinks -0.05402 0.02066 -2.615 0.00914 ** \n",
"packsDay 0.22230 0.01393 15.963 < 2e-16 ***\n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n",
"\n",
"Residual standard error: 8.135 on 616 degrees of freedom\n",
"Multiple R-squared: 0.5707,\tAdjusted R-squared: 0.5672 \n",
"F-statistic: 163.7 on 5 and 616 DF, p-value: < 2.2e-16\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model2 = lm(age ~ ., data =gaw2)\n",
"summary(model2)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = age ~ . - ethnicity, data = gaw2)\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-33.054 -5.098 -0.685 3.850 31.738 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"(Intercept) 16.61395 1.23355 13.468 < 2e-16 ***\n",
"sexM 3.92383 0.74173 5.290 1.7e-07 ***\n",
"AgeOnset 0.69578 0.04214 16.513 < 2e-16 ***\n",
"MaxDinks -0.05398 0.02064 -2.615 0.00914 ** \n",
"packsDay 0.22187 0.01388 15.988 < 2e-16 ***\n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n",
"\n",
"Residual standard error: 8.13 on 617 degrees of freedom\n",
"Multiple R-squared: 0.5705,\tAdjusted R-squared: 0.5677 \n",
"F-statistic: 204.9 on 4 and 617 DF, p-value: < 2.2e-16\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model2b = lm(age ~ . - ethnicity, data =gaw2)\n",
"summary(model2b)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
" Min. 1st Qu. Median Mean 3rd Qu. Max. \n",
"-4.304278 -0.628111 -0.084700 0.000048 0.475898 3.956511 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\t- 176
\n",
"\t\t- 63
\n",
"\t- 180
\n",
"\t\t- 64
\n",
"\t- 182
\n",
"\t\t- 65
\n",
"\t- 183
\n",
"\t\t- 66
\n",
"\t- 237
\n",
"\t\t- 84
\n",
"\t- 295
\n",
"\t\t- 109
\n",
"\t- 351
\n",
"\t\t- 128
\n",
"\t- 612
\n",
"\t\t- 248
\n",
"\t- 625
\n",
"\t\t- 254
\n",
"\t- 728
\n",
"\t\t- 298
\n",
"\t- 731
\n",
"\t\t- 300
\n",
"\t- 751
\n",
"\t\t- 306
\n",
"\t- 784
\n",
"\t\t- 323
\n",
"\t- 786
\n",
"\t\t- 324
\n",
"\t- 800
\n",
"\t\t- 330
\n",
"\t- 814
\n",
"\t\t- 333
\n",
"\t- 821
\n",
"\t\t- 337
\n",
"\t- 940
\n",
"\t\t- 382
\n",
"\t- 992
\n",
"\t\t- 404
\n",
"\t- 1023
\n",
"\t\t- 412
\n",
"\t- 1274
\n",
"\t\t- 504
\n",
"\t- 1404
\n",
"\t\t- 551
\n",
"\t- 1425
\n",
"\t\t- 559
\n",
"\t- 1435
\n",
"\t\t- 562
\n",
"\t- 1498
\n",
"\t\t- 577
\n",
"\t- 1500
\n",
"\t\t- 578
\n",
"\t- 1522
\n",
"\t\t- 585
\n",
"\t- 1595
\n",
"\t\t- 613
\n",
"\t- 1604
\n",
"\t\t- 618
\n",
"\t- 1610
\n",
"\t\t- 621
\n",
"
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[176] 63\n",
"\\item[180] 64\n",
"\\item[182] 65\n",
"\\item[183] 66\n",
"\\item[237] 84\n",
"\\item[295] 109\n",
"\\item[351] 128\n",
"\\item[612] 248\n",
"\\item[625] 254\n",
"\\item[728] 298\n",
"\\item[731] 300\n",
"\\item[751] 306\n",
"\\item[784] 323\n",
"\\item[786] 324\n",
"\\item[800] 330\n",
"\\item[814] 333\n",
"\\item[821] 337\n",
"\\item[940] 382\n",
"\\item[992] 404\n",
"\\item[1023] 412\n",
"\\item[1274] 504\n",
"\\item[1404] 551\n",
"\\item[1425] 559\n",
"\\item[1435] 562\n",
"\\item[1498] 577\n",
"\\item[1500] 578\n",
"\\item[1522] 585\n",
"\\item[1595] 613\n",
"\\item[1604] 618\n",
"\\item[1610] 621\n",
"\\end{description*}\n"
],
"text/markdown": [
"176\n",
": 63180\n",
": 64182\n",
": 65183\n",
": 66237\n",
": 84295\n",
": 109351\n",
": 128612\n",
": 248625\n",
": 254728\n",
": 298731\n",
": 300751\n",
": 306784\n",
": 323786\n",
": 324800\n",
": 330814\n",
": 333821\n",
": 337940\n",
": 382992\n",
": 4041023\n",
": 4121274\n",
": 5041404\n",
": 5511425\n",
": 5591435\n",
": 5621498\n",
": 5771500\n",
": 5781522\n",
": 5851595\n",
": 6131604\n",
": 6181610\n",
": 621\n",
"\n"
],
"text/plain": [
" 176 180 182 183 237 295 351 612 625 728 731 751 784 786 800 814 \n",
" 63 64 65 66 84 109 128 248 254 298 300 306 323 324 330 333 \n",
" 821 940 992 1023 1274 1404 1425 1435 1498 1500 1522 1595 1604 1610 \n",
" 337 382 404 412 504 551 559 562 577 578 585 613 618 621 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rs = rstudent(model2b)\n",
"summary(rs)\n",
"k = which(abs(rs) > 2)\n",
"k"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = age ~ . - ethnicity, data = gaw2[-k, ])\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-15.3127 -4.7455 -0.1346 3.8465 17.5500 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"(Intercept) 16.76080 0.98011 17.101 < 2e-16 ***\n",
"sexM 2.64491 0.59760 4.426 1.15e-05 ***\n",
"AgeOnset 0.64691 0.03388 19.093 < 2e-16 ***\n",
"MaxDinks -0.04960 0.01647 -3.011 0.00271 ** \n",
"packsDay 0.26238 0.01232 21.290 < 2e-16 ***\n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n",
"\n",
"Residual standard error: 6.396 on 587 degrees of freedom\n",
"Multiple R-squared: 0.6913,\tAdjusted R-squared: 0.6892 \n",
"F-statistic: 328.6 on 4 and 587 DF, p-value: < 2.2e-16\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model2c = lm(age ~ . - ethnicity, data =gaw2[-k, ])\n",
"summary(model2c)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = age ~ sex + factor(ethnicity) + alcoholDependence + \n",
" AgeOnset + MaxDinks + packsDay, data = gaw2)\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-42.780 -8.265 -1.316 6.601 45.869 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"(Intercept) 51.82961 8.76901 5.911 4.30e-09 ***\n",
"sexM 0.39746 0.76050 0.523 0.601 \n",
"factor(ethnicity)1 3.46936 9.40157 0.369 0.712 \n",
"factor(ethnicity)3 -1.55100 10.67662 -0.145 0.885 \n",
"factor(ethnicity)4 -2.44669 8.75887 -0.279 0.780 \n",
"factor(ethnicity)5 -6.29545 9.31048 -0.676 0.499 \n",
"factor(ethnicity)6 0.27467 8.71812 0.032 0.975 \n",
"factor(ethnicity)7 -1.30735 8.82186 -0.148 0.882 \n",
"factor(ethnicity)8 -2.56055 9.40937 -0.272 0.786 \n",
"alcoholDependence -5.48646 0.38193 -14.365 < 2e-16 ***\n",
"AgeOnset 0.48896 0.04334 11.282 < 2e-16 ***\n",
"MaxDinks -0.11025 0.02697 -4.088 4.61e-05 ***\n",
"packsDay 0.29015 0.01533 18.921 < 2e-16 ***\n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n",
"\n",
"Residual standard error: 12.3 on 1368 degrees of freedom\n",
"Multiple R-squared: 0.3502,\tAdjusted R-squared: 0.3445 \n",
"F-statistic: 61.43 on 12 and 1368 DF, p-value: < 2.2e-16\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model3 = lm(age ~ sex + factor(ethnicity) + AgeOnset + MaxDinks + packsDay, data =gaw2)\n",
"summary(model3)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"4380.83698007384"
],
"text/latex": [
"4380.83698007384"
],
"text/markdown": [
"4380.83698007384"
],
"text/plain": [
"[1] 4380.837"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"4379.01216679838"
],
"text/latex": [
"4379.01216679838"
],
"text/markdown": [
"4379.01216679838"
],
"text/plain": [
"[1] 4379.012"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"3884.14279040001"
],
"text/latex": [
"3884.14279040001"
],
"text/markdown": [
"3884.14279040001"
],
"text/plain": [
"[1] 3884.143"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"4411.86756072302"
],
"text/latex": [
"4411.86756072302"
],
"text/markdown": [
"4411.86756072302"
],
"text/plain": [
"[1] 4411.868"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"4405.60980735482"
],
"text/latex": [
"4405.60980735482"
],
"text/markdown": [
"4405.60980735482"
],
"text/plain": [
"[1] 4405.61"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"3910.44383020932"
],
"text/latex": [
"3910.44383020932"
],
"text/markdown": [
"3910.44383020932"
],
"text/plain": [
"[1] 3910.444"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"AIC(model2) # kryterium Akaike\n",
"AIC(model2b)\n",
"AIC(model2c)\n",
"BIC(model2) # kryterium Schwartza\n",
"BIC(model2b)\n",
"BIC(model2c)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
" Min. 1st Qu. Median Mean 3rd Qu. Max. \n",
"-43.305 -8.129 -1.504 0.000 6.405 46.455 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"\n",
"\tShapiro-Wilk normality test\n",
"\n",
"data: model5$residuals\n",
"W = 0.97544, p-value = 1.349e-14\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAgAElEQVR4nO3di5qaTLdF4UIRz3j/dxsBxcJDa4qlk1qM99n7/zqdXqJWjdgq\nSYcTgNGC+goAHhASYICQAAOEBBggJMAAIQEGCAkwQEiAAUICDBASYICQAAOEBBggJMAAIQEG\nCAkwQEiAAUICDBASYICQAAOEBBggJMAAIQEGCAkwQEiAAUICDBASYICQAAOEBBggJMAAIQEG\nCAkwQEiAAUICDBASYICQAAOEBBggJMAAIQEGCAkwQEiAAUKas8DyW+Ge7IV+W10+Ck/32eon\nV2ZdhJB2pGfX+vK5OlzcjrHYJF7u8zvn7TVxa0Y39Z2PQtoXP7nH1s12Nw9pPwhp2X1cpV0u\nIQ3N6Ka+81FIP9ocixAOiaN/XOt1HNLm+osPD0RIf5rRTX3nIaS/v+hH18Vk9PK582PQvv/c\nudVt+392D3z//yV+zOimvvPqEaleN98EldvuM/13RrtV893X7jJyPP9quYkmj4v2m6Ztef54\nUR2vl7dZhMV5M2+KsNyfBgaX9+SP/yeT91ehaJ7yXEfrqghFd+CnD7HNL9r/KwZXOB6Lbvlt\neHiY62ev/72/vfeX4hYh9V6EdCwu+SwHIV2eYYSynbg8+1jeJhftwPWr2keCyxec92zVf64X\nX17c6/UKPZn88ypcr/b+dksOTXbn/+u+lyu6kPoDdFc4Hotv+f3zrOiWxnfZ/e19uBS3CKn3\nIqTz1jv/YVqft8gm2uHldcd027jof3mdDM3Y+XnIsj6dqkEf58eAOIDO4PKehfQ4+fdVuP6y\nuN2S/llR+xi2aqsaHGA7HItveX+nPN7S0+AIw9v7cCluEVIvxC6f6P63+UalPv+Z3X/utDv/\nd1Ofv2vptuX5mUbR/Ke4TTYbqnkechxc0vmzzXZeHNr/3I59d3lPvrV7mHx+FXZFvKXrbhdf\nLu5WXnOljl2Du1N8hQdjz2753WHuQnq4vQ/3n1uE1HsRUrNl+uch142zuv75WrVP1svLn/Lb\n2+Tu7qK7/90P/nP7grvLexLSw+SLq7Dro6m7yeixYdmUd1heXvLedw8u1+/b2unB2LNbfneY\nh+dId7f34f5zi5B6L0K6vGa86v/ovvyn3XDtn+vd842nv33+gm21DPHGevXMP768F6813z9S\nxiNheBVut6S4v7hD/9iwbb+gii5sMPbslofHWxr/8sntHV6KW4TUu+224Saprlvr+PBb149e\nba/TdhGV+XdIg48+C+mPqzD8M+HZ40X30WHwHevd2JNb/iakZ7d3cCluEVLvVUinetu9GLUc\n/Fb/cFA8fURqf9n8kb9YbQ6fhBRf3v8+IhUPO7x4ks6qjDZ90YyHcNfHcOzJLf87pKe3d3Ap\nbhFS72VIjfYtm9vnyrfPkdrfXVw+/zak8u1zpIf//H0VysGztO5zy+5z+3ZLn2/P+jGk8u7J\n3cMtf3JL6+4yw6vbO7gUt1zfuP/zIqRF//Th+lBRv3zVLjz/huf9I9L7V+0e/nM3shm+cNhc\no337n9ujSfMlh9OhaF+Sa8bP/38cPNAOxx5v+cNhmoew6vK6xYvbO7wUtwip9yKk825bHtvn\nzM2z8mbHNP/t33nszrB58e5K9wLZbrjNnoV0f3kfhPTmKvS/jF4hvH6ufa2hfzF8Gx8vHhve\n8vvL7X65Gvzy2e0dXopbhNR7EVL/ZLn9Fn91/eC6jbsz1XaXL7mL5Hq6ddFuzL9Curu8T0K6\nG7kcq7z87uUadbv38rnLl1ye9S+jm9UfbzA2uOXDy7ge5nj58u6XT2/v4FLcIqTeq5C67++X\nl/fly76dVRG9qHtozrXbPUTSfLpYHY7XExaeXPrV4PI+CunuKgxP9zvV1SJ+v/XyJc2JdNdX\n5jeL/u8j3Y4Xjw1u+e0yBodpb/i2/6buye0d3n9eEZKlOrMnAr6f//8U96SF0D3TaE4aKN9+\n8YQQkhnuSQu35/0Prx5jHgjJQv9XBXy/MoXXCMlEvW5exiq8n1CGlwgJMEBIgAFCAgwQEmCA\nkAADhAQYICTAACEBBggJMEBIgAFCAgwQEmCAkAADhAQYICTAACEBBggJMEBIgAFCAgwQEmCA\nkAADhAQYICTAACEBBggJMEBIgAFCAgwQEmCAkAADhAQYICTAACEBBggJMEBIgAFCAgwQEmCA\nkAADhAQYICTAACEBBggJMEBIgAFCAgwQEmCAkAADhAQYICTAACEBBggJMEBIgAFCAgwQEmCA\nkAADhAQYICTAACEBBggJMJAe0n5dhkZZ7Q2vz5yEsdQ3ADepi1EvogVdml6l2RgbAiFNSOpi\nVKHYHtqPjrsiVHZXaEYIyZHUxSjCof/4EAqbKzMzhORI6mIMvkHnu/UkhOQIj0g6hOTIiOdI\nu2P7Ec+RUhGSI8mLsYxetVvUlldpNgjJkRHvI1Xt+0hFueZ9pDSE5AiLoUNIjrAYOoTkCKcI\n6RCSI5wipENIjnCKkA4hOcIbsjqE5MiXThHibP8PEJIjP3hEYr1fICRHfnCKEOv9AiE58oNT\nhFjvFwjJkR+cIsR6v0BIjvxgMVjvFwjJEULSISRHRi7GZhFCufvqIfwiJEfGvY90ecXh7xMb\nWO8XCMmRUSFVoapPp2MVNt84hHuE5MiokIrQvu5dh8U3DuEeITkyKqTr2T9/nwXEer9ASI6M\nCml1DYlThFIQkiPpIZXrzS5szx/WFacIJSEkR9JD6s/sDqHgFKEUhORI8mIcDptNWbYvOVR/\n/2tcrPcLhOQIZzboEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHp\nEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4h\nOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIj\nhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJI\nOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRD\nSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTk\nCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Q\nkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHpEJIjhKRDSI4Qkg4hOUJIOoTkCCHp\nEJIj6YuxX5ehUVb7bx3COUJyJHUx6kW4WX7lEO4RkiOpi1GFYntoPzruilB94xDuEZIjqYtR\nhEP/8SEU3ziEe4TkSOpihPDqF2aHcI+QHOERSYeQHBnxHGl3bD/iOVIqQnIkeTGW0at2i/or\nh/COkBwZ8T5S1b6PVJRr3kdKQ0iOcGaDDiE5Qkg6hOQIpwjpEJIjnCKkQ0iOcIqQDiE5whuy\nOoTkyJdOEQqxxEO4R0iO8IikQ0iOcIqQDiE5wilCOoTkCKcI6RCSI5zZoENIjhCSDiE5Mn4x\n3r68zXq/QEiOEJIOITmS/obsx++5st4vEJIjqYuxLwhpLEJyJHkx6jIs23dk+dYuFSE5MmIx\ntiFsT4SUjpAcGbMYx2Uoa0JKRkiOjFuMdSh2hJSKkBwZuRiHxfu/JsF6v0BIjoxejBUhpSIk\nRzhFSIeQHCEkHUJyhJB0CMkRQtIhJEcISYeQHCEkHUJyhJB0CMkRQtIhJEcISYeQHCEkHUJy\nhJB0CMkRQtIhJEcISYeQHCEkHUJyhJB0CMkRQtIhJEcISYeQHCEkHUJyhJB0CMkRQtIhJEcI\nSYeQHCEkHUJyhJB0CMkRQtIhJEcISYeQHCEkHUJyhJB0CMkRQtIhJEcISYeQHCEkHUJyhJB0\nCMkRQtIhJEcISYeQHCEkHUJyhJB0CMkRQtIhJEcISYeQHCEkHUJyhJB0CMkRQtIhJEcISYeQ\nHCEkHUJyhJB0CMkRQtIhJEcISYeQHCEkHUJyhJB0CMkRQtIhJEcISYeQHCEkHUJyhJB0CMkR\nQtIhJEcISYeQHCEkHUJyhJB0CMkRQtIhJEcISYeQHCEkHUJyhJB0CMkRQtIhJEcISWd0SGOZ\n3Aq0CElH/YjEwhgiJB11CCyMIULSUYfAwhgiJB11CCyMIULSUYfAwhgiJB11CCyMIULSUYfA\nwhgiJB11CCyMIULSUYfAwhgiJB11CCyMIULSUYfAwhgiJB11CCyMIULSUYfAwhgiJB11CCyM\nIULSUYfAwhgiJB11CCyMIULSUYfAwhgiJB11CCyMIULSUYfAwhhKvzP367L9i/9ltf/WIZxT\nh8DCGEq9M+tF9I9oLL9yCPfUIbAwhlLvzCoU20P70XFXhOobh3BPHQILYyj1zizCof/4EIpv\nHMI9dQgsjKHUO3Pwj6L9/S+ksV4vqENgYQzxiKSjDoGFMTTiOdLu2H7Ec6RU6hBYGEPJd+Yy\netVuUX/lEN6pQ2BhDI14H6lq30cqyjXvI6VRh8DCGOLMBh11CCyMIULSUYfAwhjiFCEddQgs\njCFOEdJRh8DCGOIUIR11CCyMId6Q1VGHwMIYiu/Mxfr4+dzfpwjxExY/oA6BhTE07CF83BKP\nSOOpQ2BhDMV3Zr1dfdwSpwiNpw6BhTF0f2fu14vPWuIUodHUIbAwhp7cmYfi3Mbm7SSnCI2l\nDoGFMfR4Z+6WH7w3NO4QaKlDYGEM3d2Z9fr8cLTY1eeayi8dAlfqEFgYQ4M7c9+82FB1L8d9\n+Kr1pgiLN98Gsl4vqENgYQwN3kc6Pxhtrq8b/P2S9vmZVBmKzWnNKULp1CGwMIYG7yOVu4/n\nDm1BVVjVp2P590sTrNcL6hBYGEOD95H+Y27VvHdUdQ9bdVh8eghE1CGwMIYGd2ZdNWEU1QdF\ndU+hLq9I8K8IJVGHwMIYiu/MY9EWEULx/v3Yrp1t9z0dpwglUYfAwhiK78xl84yneVz64KXv\nVfe1jXrFKUJJ1CGwMIaensT9wUvfdRF99d8v8LFeL6hDYGEMxXdmEboHmfqj95Cqaz7Fn49H\nrNdL6hBYGEPxnVmFZXPa3H7597dqYw6BiDoEFsbQ4M68ntFtd57dwyFwow6BhTE0vDO3zQnd\ny/dnfo84BHrqEFgYQz+4M1mvF9QhsDCGCElHHQILY4iQdNQhsDCGBnfmuv9XH792CNyoQ2Bh\nDMV35vo7/4IW6/WCOgQWxtDwDVnj1+seD4GIOgQWxtDTU4S+dwhE1CGwMIbiO7MM//M3kpIO\ngYg6BBbG0PCvUSzf/Mtaow+BiDoEFsbQ8Fs7Xmz4JXUILIwhQtJRh8DCGOINWR11CCyMIULS\nUYfAwhga3pm7svmurvz8xyT9/yHQU4fAwhh6/PtIzb9lYloS6/WCOgQWxlB8Z27Csv1b5puw\n+tYhEFGHwMIYuv83Gy7/INe3DoGIOgQWxtD9KUKE9DvqEFgYQ/Gdubg8Ih3+/ieIxxwCEXUI\nLIyhJ8+RdsZngbNeL6hDYGEMDe7Mkn9F6JfUIbAwhh7fRwrl9puHQE8dAgtjiDMbdNQhsDCG\nCElHHQILY4iQdNQhsDCG+GsUOuoQWBhDhKSjDoGFMfTkztwv3/+csZGHQEMdAgtj6NmdWXPS\n6k+oQ2BhDD29M/nW7ifUIbAwhp7dmZs3P8vS4BA46UNgYQw9f7Fh/a1DIKIOgYUx9Cykhe2/\nXMx6vaAOgYUxxBuyOuoQWBhDhKSjDoGFMfTiDVnLN2VZrxfUIbAwhghJRx0CC2NocGeui935\nf/cFf7HvJ9QhsDCG4jtzHQ7tfw/B9Bwh1usFdQgsjKH7f0Vo+IH5IRBRh8DCGIrvzKJ/ROJf\nEfoFdQgsjKH4zqxC+xyJf0XoR9QhsDCGBnfm8vJ6XfW9Q+BGHQILY2h4Z27bf0Vo981DoKcO\ngYUxxJkNOuoQWBhDhKSjDoGFMTS8M/lBY7+kDoGFMfT4YsOJHzT2I+oQWBhD8Z3JDxr7LXUI\nLIyh4Ruy/KCxX1KHwMIYuj9FiJB+Rx0CC2MovjP5QWO/pQ6BhTH05DkSpwj9iDoEFsbQ4M7k\nB439lDoEFsbQ4/tI/KCxX1GHwMIY4swGHXUILIyh+M4sbc/6fnYIRNQhsDCGnv4N2e8dAhF1\nCCyMofuXv798CETUIbAwhuI7sy6X+y8fAhF1CCyMoeG3dvzEvl9Sh8DCGCIkHXUILIwhXv7W\nUYfAwhgiJB11CCyMoeud+aWXvuND4I46BBbG0DCkr+TEer2gDoGFMURIOuoQWBhDhKSjDoGF\nMURI6cJYY48vnkeEkNKpN7J6HhFCSqfeyOp5RG4hfeXHXsaHcEe9kdXziBBSOvVGVs8jwpkN\n6dQbWT2PCCGlU29k9TwihJROvZHV84gQUjr1RlbPI5J+Z+7X3T+DV1Zv/lqt2/VSb2T1PCKp\nd2a9iF7j+/sflHS7XuqNrJ5HJPXOrEKxPbQfHXfF3z+92e16qTeyeh6R1DuzCIf+40MovnGI\nyVNvZPU8Iql35uA927/fwHW7XuqNrJ5HhEekdOqNrJ5HZMRzpF33k2Z5jjTXeUSS78xl9Krd\n4s9/odXteqk3snoekRHvI1Xt+0hFueZ9pHnOI8KZDenUG1k9jwghpVNvZPU8IpwilE69kdXz\niHCKUDr1RlbPI8IpQunUG1k9jwhvyKZTb2T1PCJfOkXoa/8AxJSoN7J6HhEekdKpN7J6HhFO\nEUqn3sjqeUQ4RSideiOr5xHhFKF06o2snkeEMxvSqTeyeh4RQkqn3sjqeUSS78x6FcJyd7kQ\n/obsHOcRST5FqOhOtOsuhJDmOI9I+svfm3NNm6I9zY6QZjmPSPobsu1/jsXiSEgznUdk7ClC\n9XJJSDOdRyT1zlyE65uwiyUhzXMekdQ7cxNWl4+OYUlIs5xHJPnOrPp6dm9O8Ha7XuqNrJ5H\nJP3OPJTXj44rQprjPCKc2ZBOvZHV84gQUjr1RlbPI0JI6dQbWT2PCCGlU29k9TwihJROvZHV\n84gQUjr1RlbPI0JI6dQbWT2PCCGlU29k9TwihJROvZHV84gQUjr1RlbPI0JI6dQbWT2PCCGl\nU29k9TwihJROvZHV84gQUjr1RlbPI0JI6dQbWT2PCCGlU29k9TwihJROvZHV84gQUjr1RlbP\nI0JI6dQbWT2PCCGlU29k9TwihJROvZHV84gQUjr1RlbPI0JI6dQbefT8WCOP7wohpZOHkPm8\nK4SUTr0Rc593hZDSqTdi7vOuEFI69UbMfd4VQkqn3oi5z7tCSOnUGzH3eVcIKZ16I+Y+7woh\npVNvxNznXSGkdOqNmPu8K4SUTr0Rc593hZDSqTdi7vOuEFI69UbMfd4VQkqn3oi5z7tCSOnU\nGzH3eVcIKZ16I+Y+7wohpVNvxNznXSGkdOqNmPu8K4SUTr0Rc593hZDSqTdi7vOuEFI69UbM\nfd4VQkqn3oi5z7tCSOnUGzH3eVcIKZ16I+Y+7wohpVNvxNznXSGkdOqNmPu8K4SUTr0Rc593\nhZDSqTdi7vOuEFI69UbMfd4VQkqn3oi5z7tCSOnUGzH3eVcIKZ16I+Y+7wohpVNvxNznXSGk\ndOqNmPu8K4SUTr0Rc593hZDSqTdi7vOuEFI69UbMfd4VQkqn3oi5z7tCSOnUGzH3eVcIKZ16\nI+Y+7wohpVNvxNznXSGkdOqNmPu8K4SUTr0Rc593hZDSqTdi7vOuEFI69UbMfd4VQkqn3oi5\nz7tCSOnUGzH3eVcIKZ16I+Y+7wohpVNvxNznXSGkdOqNmPu8K4SUTr0Rc593hZDSqTdi7vOu\nEFI69UbMfd4VQkqn3oi5z7tCSOnUGzH3eVcIKZ16I+Y+7wohpVNvxNznXSGkdOqNmPu8K4SU\nTr0Rc593Jf3O2K/L0Cir/bcOMXHqjZj7vCupd0a9CDfLrxxi8tQbMfd5V1LvjCoU20P70XFX\nhOobh5g89UbMfd6V1DujCIf+40MovnGIyVNvxNznXUm9M0J49QuzQ0yeeiPmPu8Kj0jp1Bsx\n93lXRjxH2h3bj3iOxDzS74xl9Krdov7KIaZOvRFzn3dlxPtIVfs+UlGueR+J+dnjzIZ06o2Y\n+7wrhJROvRFzn3eFU4TSqTdi7vOucIpQOvVGzH3eFU4RSqfeiLnPu8IbsunUGzH3eVe+dIpQ\niCUeYvLUGzH3eVd4REqn3oi5z7vCKULp1Bsx93lXOEUonXoj5j7vCqcIpVNvxNznXeHMhnTq\njZj7vCuElE69EXOfd4WQ0qk3Yu7zrhBSOvVGzH3eFUJKp96Iuc+7kn5mw8cnL7i9v9UbMfd5\nV1LvjA0hyTdi7vOuJN8Zh+LvvzxhcIipU2/E3OddSb8zDn+fGGRxiIlTb8Tc510ZcWdsovNW\nv3SIaVNvxNznXeFVu3TqjZj7vCuElE69EXOfd4WQ0qk3Yu7zrhBSOvVGzH3eFUJKp96Iuc+7\nQkjp1Bsx93lXCCmdeiPmPu8KIaVTb8Tc510hpHTqjZj7vCuElE69EXOfd4WQ0qk3Yu7zrhBS\nOvVGzH3eFUJKp96Iuc+7Qkjp1Bsx93lXCCmdeiPmPu8KIaVTb0T5/Fgjjz8phJROvpFnPj8p\nhJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8p\nhJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8p\nhJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8p\nhJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8phJROvZHmPj8p\nhJROvZHmPj8phJROvZHmPj8phJROvZHmPj8pcw5J/Y/AM+/IrENiPuv5SSEk5nOdnxRCYj7X\n+UkhJOZznZ8UQmI+1/lJISTmc52fFEJiPtf5SSEk5nOdnxRCYj7X+UkhJOZznZ8UQmI+1/lJ\nISTmc52fFEJiPtf5SSEk5nOdnxRCYj7X+UkhJOZznZ8UQmI+1/lJISTmc52fFEJiPtf5SSEk\n5nOdnxRCYj7X+UkhJOZznZ8UQmI+1/lJISTmc52fFEJiPtf5SSEk5nOdnxRCYj7X+UkhJOZz\nnZ8UQmJeNi/+IQamCIn5uc6bIiTm5zpvipCYn+u8KUJifq7zpgiJ+bnOmyIk5uc6b4qQmJ/r\nvClCYn6u86YIifm5zpsiJObnOm+KkJif67wpQmJ+rvOmCIn5uc6bIiTm5zpvipCYn+u8KUJi\nfq7zpgiJ+bnOmyIk5rOdn9LfsE2/sP26bK9NWe2/dYgvk28E5rOeN7mwehGVvfzKIb5OvRDM\n5z1vcmFVKLaH9qPjrgjVNw7xdeqFYD7veZMLK8Kh//gQiqRDjP4ed6zE2/72hjE/i3mTCxvs\nwsct+dF+FeUDdBL3/vPNnDj3H49IgH8jniPtju1Hb58jAf4lP7wto4fIRW15lYD8jHgfqWrf\nRyrK9Zv3kQD/JvvaNJATQgIMEBJggJAAA4QEGCAkwAAhAQYICTBASIABQgIMEBJggJAAA4QE\nGCAkwAAhAQYICTBASIABQgIM5ByS6B9xwlSoN2BsUlfmP6mvO8ef9/EHJnVl/pP6unP8eR9/\nYFJX5j+przvHn/fxByZ1Zf6T+rpz/Hkff2BSV+Y/qa87x5/38QcmdWX+k/q6c/x5H39gUlfm\nP6mvO8ef9/EHJnVl/pP6unP8eR9/YFJX5j+przvHn/fxByZ1Zf6T+rpz/Hkff2BSV+Y/qa87\nx5/38QcmdWX+k/q6c/x5H39gUlcGyBUhAQYICTBASIABQgIMEBJggJAAA4QEGCAkwAAhAQYI\nCTBASIABQgIMEBJggJAAA4QEGMg3pP3lqldFKKr6xwffLPqDSo4vO2xDf+O1i/9UtiHVRXfV\nl+3PJVj89uBVe9CiVh1fdtiG/sZrF/+5bEMqu5/qsQ/F4XQowv6Xxz6E1XkbbcJKdHzZYRv6\nG69d/BdyDWl7+fE4Vdi1v1r/8uBld68110ByfNlhG/obr138FzIN6RiW3X1ZhuOp+VOyFFyJ\n5hqIjq+82R3hjZ/E4t/LNKRlOHb3Zbj9+fhrdVjKji+82R3ljZ/C4j+YwnX4f+uwPcnvy03z\njcVcQxLe+Eks/oMpXIf/1j6Yq+/LY1Hqjq/eQsIbP4nFfzSF6/DfFs1rr+L7si6WwuOLt5Dy\nxk9h8Z+YwnX42OVnWa/aF2u6u6/45X0Z/yztZffuxU+PfyM67JXwxssW/40pXIePXTZy/PPh\nuxdujr954eYW0nGxPLaf+unxb0SH7UhvvGzx38gqpIv4vly3f0DtQvXTa7ALy8tHmuOrDtvS\n3nj94j+XY0gd4Zvbx34rzfDMBv2NP0kX/4XcQzot2j+dlm++2Nbq9oei5Pi6w54mceOli/9C\n9iHV7QnAvz70bS8pjq877GkSN166+C/kGxIwIYQEGCAkwAAhAQYICTBASIABQgIMEBJggJAA\nA4QEGCAkwAAhAQYICTBASIABQgIMEBJggJAAA4QEGCAkwAAhAQYICTBASIABQgIMEBJggJAA\nA4QEGCAkwAAhAQYICTBASIABQgIMEBJggJDyw5pNEIsyNXc/7L795e1n5J2Oq+aH1NWfX0h4\ntcQvfwMJuDOn5klIh1tIlw+Lzy+EkH6CO3NqnoZUXn+5DFUd6vP/pl7eB7+BBNyZU/MkpE1Y\nx78Mp/rtQ9LLy/vgN5CAO/O3zrt3HYpzF1W4PKpsFmGx6X6zKs6f6/b3+bPF5jJwDmlznS9C\nfV2zEOpF+1DVf+1ptwxhuTtdI+kvr/tl+7+7Mlx+EHj3y+sExiGk3wph3TzHafZvV1L7Qc9C\n7sQAAAJrSURBVFierh+W7f4u+882vyzDbnXZ/VVY7PqQyvYibl+76Z5AbS6R3C7vFtK6+5Lq\ndE30OoFxCOm3zju+brZv+7/n78+2oTicDkXY3j48L8mu+f3zM6HdNaRbbavzB6t9f1GDry3C\nobmYRTcVXd4tpNAdKVx+eZvAOIT0WyHs2/89nvoHm1MbQ/Phvv2w/WyTSN1849bv/rrqHjgO\nVfM401/U8Gt3/WEGlxd9a9f/9uWS+bbOBiH9Vrylb1v88cP+Be/b7q+vDxxht+i/fRt87Tmx\n8nB4edGXN6J262Uf0m0C4xDSb40Iqf8wdE09hnRaF817TMe/Qlr2XzycwDiE9FufhnQ3MPgw\nPHz9za5aXCN7GtIqLDa74y2kfgLjENJv3Yd0fY5UXj/c3z7bDxTt06Bj80Xdy9/t+0iXEMr7\npznXcqLLa7/09tEgpNN9i0jBXfhb9yFFr9rtbq+ytZ89ba4vNlTNy9V11YSxCuX1zIbL9o++\ndtG9JHd5RIour3lOVS+7kPanw+050m0C4xDSb92HFL+P1L7KvYo+e322Uxf9mz+XD4vT7XHk\n9rXb7vnP/vJ7t8vb9O8oVWHwNbcJjENIv/UQ0mlT9Gc2rAdnNoTV9TXy86NR/0XH6nr2d/8N\nWf+13XkK+/73bpd3/mjVfbRqvmJ3fay7TWAcQsoPazZBLEp+WLMJYlEAA4QEGCAkwAAhAQYI\nCTBASIABQgIMEBJggJAAA4QEGCAkwAAhAQYICTBASIABQgIMEBJggJAAA4QEGCAkwAAhAQYI\nCTBASIABQgIMEBJggJAAA4QEGCAkwAAhAQYICTDwD8j8SB+WJvfIAAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title \"Histogram of model5$residuals\""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"summary(model2c$residuals)\n",
"hist(model2c$residuals)\n",
"shapiro.test(model2c$residuals)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"List of 13\n",
" $ coefficients : Named num [1:5] 16.7608 2.6449 0.6469 -0.0496 0.2624\n",
" ..- attr(*, \"names\")= chr [1:5] \"(Intercept)\" \"sexM\" \"AgeOnset\" \"MaxDinks\" ...\n",
" $ residuals : Named num [1:592] -0.381 -8.771 0.228 6.182 5.444 ...\n",
" ..- attr(*, \"names\")= chr [1:592] \"1\" \"2\" \"5\" \"7\" ...\n",
" $ effects : Named num [1:592] -899.1 35.01 184.4 2.02 -136.18 ...\n",
" ..- attr(*, \"names\")= chr [1:592] \"(Intercept)\" \"sexM\" \"AgeOnset\" \"MaxDinks\" ...\n",
" $ rank : int 5\n",
" $ fitted.values: Named num [1:592] 30.4 39.8 27.8 53.8 32.6 ...\n",
" ..- attr(*, \"names\")= chr [1:592] \"1\" \"2\" \"5\" \"7\" ...\n",
" $ assign : int [1:5] 0 1 2 3 4\n",
" $ qr :List of 5\n",
" ..$ qr : num [1:592, 1:5] -24.3311 0.0411 0.0411 0.0411 0.0411 ...\n",
" .. ..- attr(*, \"dimnames\")=List of 2\n",
" .. .. ..$ : chr [1:592] \"1\" \"2\" \"5\" \"7\" ...\n",
" .. .. ..$ : chr [1:5] \"(Intercept)\" \"sexM\" \"AgeOnset\" \"MaxDinks\" ...\n",
" .. ..- attr(*, \"assign\")= int [1:5] 0 1 2 3 4\n",
" .. ..- attr(*, \"contrasts\")=List of 1\n",
" .. .. ..$ sex: chr \"contr.treatment\"\n",
" ..$ qraux: num [1:5] 1.04 1.06 1.03 1 1.02\n",
" ..$ pivot: int [1:5] 1 2 3 4 5\n",
" ..$ tol : num 1e-07\n",
" ..$ rank : int 5\n",
" ..- attr(*, \"class\")= chr \"qr\"\n",
" $ df.residual : int 587\n",
" $ contrasts :List of 1\n",
" ..$ sex: chr \"contr.treatment\"\n",
" $ xlevels :List of 1\n",
" ..$ sex: chr [1:2] \"F\" \"M\"\n",
" $ call : language lm(formula = age ~ . - ethnicity, data = gaw2[-k, ])\n",
" $ terms :Classes 'terms', 'formula' language age ~ (sex + ethnicity + AgeOnset + MaxDinks + packsDay) - ethnicity\n",
" .. ..- attr(*, \"variables\")= language list(age, sex, ethnicity, AgeOnset, MaxDinks, packsDay)\n",
" .. ..- attr(*, \"factors\")= int [1:6, 1:4] 0 1 0 0 0 0 0 0 0 1 ...\n",
" .. .. ..- attr(*, \"dimnames\")=List of 2\n",
" .. .. .. ..$ : chr [1:6] \"age\" \"sex\" \"ethnicity\" \"AgeOnset\" ...\n",
" .. .. .. ..$ : chr [1:4] \"sex\" \"AgeOnset\" \"MaxDinks\" \"packsDay\"\n",
" .. ..- attr(*, \"term.labels\")= chr [1:4] \"sex\" \"AgeOnset\" \"MaxDinks\" \"packsDay\"\n",
" .. ..- attr(*, \"order\")= int [1:4] 1 1 1 1\n",
" .. ..- attr(*, \"intercept\")= int 1\n",
" .. ..- attr(*, \"response\")= int 1\n",
" .. ..- attr(*, \".Environment\")= \n",
" .. ..- attr(*, \"predvars\")= language list(age, sex, ethnicity, AgeOnset, MaxDinks, packsDay)\n",
" .. ..- attr(*, \"dataClasses\")= Named chr [1:6] \"numeric\" \"factor\" \"numeric\" \"numeric\" ...\n",
" .. .. ..- attr(*, \"names\")= chr [1:6] \"age\" \"sex\" \"ethnicity\" \"AgeOnset\" ...\n",
" $ model :'data.frame':\t592 obs. of 6 variables:\n",
" ..$ age : int [1:592] 30 31 28 60 38 40 32 28 22 34 ...\n",
" ..$ sex : Factor w/ 2 levels \"F\",\"M\": 1 1 2 2 1 2 1 1 2 2 ...\n",
" ..$ ethnicity: int [1:592] 6 6 6 6 6 6 6 6 6 6 ...\n",
" ..$ AgeOnset : int [1:592] 16 30 16 38 18 33 17 15 15 16 ...\n",
" ..$ MaxDinks : int [1:592] 24 12 40 24 75 48 36 48 71 26 ...\n",
" ..$ packsDay : num [1:592] 17 16 0 42 30 0 32 12 12 0 ...\n",
" ..- attr(*, \"terms\")=Classes 'terms', 'formula' language age ~ (sex + ethnicity + AgeOnset + MaxDinks + packsDay) - ethnicity\n",
" .. .. ..- attr(*, \"variables\")= language list(age, sex, ethnicity, AgeOnset, MaxDinks, packsDay)\n",
" .. .. ..- attr(*, \"factors\")= int [1:6, 1:4] 0 1 0 0 0 0 0 0 0 1 ...\n",
" .. .. .. ..- attr(*, \"dimnames\")=List of 2\n",
" .. .. .. .. ..$ : chr [1:6] \"age\" \"sex\" \"ethnicity\" \"AgeOnset\" ...\n",
" .. .. .. .. ..$ : chr [1:4] \"sex\" \"AgeOnset\" \"MaxDinks\" \"packsDay\"\n",
" .. .. ..- attr(*, \"term.labels\")= chr [1:4] \"sex\" \"AgeOnset\" \"MaxDinks\" \"packsDay\"\n",
" .. .. ..- attr(*, \"order\")= int [1:4] 1 1 1 1\n",
" .. .. ..- attr(*, \"intercept\")= int 1\n",
" .. .. ..- attr(*, \"response\")= int 1\n",
" .. .. ..- attr(*, \".Environment\")= \n",
" .. .. ..- attr(*, \"predvars\")= language list(age, sex, ethnicity, AgeOnset, MaxDinks, packsDay)\n",
" .. .. ..- attr(*, \"dataClasses\")= Named chr [1:6] \"numeric\" \"factor\" \"numeric\" \"numeric\" ...\n",
" .. .. .. ..- attr(*, \"names\")= chr [1:6] \"age\" \"sex\" \"ethnicity\" \"AgeOnset\" ...\n",
" - attr(*, \"class\")= chr \"lm\"\n"
]
}
],
"source": [
"str(model2c)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### ANOVA\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
" Df Sum Sq Mean Sq F value Pr(>F) \n",
"sex 1 2102 2102.0 14.04 0.000196 ***\n",
"Residuals 620 92856 149.8 \n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model_aov = aov(age ~ sex, data = gaw2)\n",
"summary(model_aov)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"\tWelch Two Sample t-test\n",
"\n",
"data: gaw2$age[gaw2$sex == \"F\"] and gaw2$age[gaw2$sex == \"M\"]\n",
"t = -4.0547, df = 475.25, p-value = 5.864e-05\n",
"alternative hypothesis: true difference in means is not equal to 0\n",
"95 percent confidence interval:\n",
" -5.850961 -2.031192\n",
"sample estimates:\n",
"mean of x mean of y \n",
" 35.39698 39.33806 \n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"t.test(gaw2$age[gaw2$sex == 'F'], gaw2$age[gaw2$sex == 'M'])"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
" Df Sum Sq Mean Sq F value Pr(>F)\n",
"factor(ethnicity) 6 772 128.7 0.84 0.539\n",
"Residuals 615 94186 153.2 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model_aov = aov(age ~ factor(ethnicity), data = gaw2)\n",
"summary(model_aov)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"\tPairwise comparisons using t tests with pooled SD \n",
"\n",
"data: gaw2$age and gaw2$ethnicity \n",
"\n",
" 1 3 4 5 6 7\n",
"3 - - - - - -\n",
"4 - - - - - -\n",
"5 - - - - - -\n",
"6 - - - - - -\n",
"7 - - - - - -\n",
"8 - - - - - -\n",
"\n",
"P value adjustment method: holm "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pairwise.t.test(gaw2$age, gaw2$ethnicity)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" Tukey multiple comparisons of means\n",
" 95% family-wise confidence level\n",
"\n",
"Fit: aov(formula = age ~ factor(ethnicity), data = gaw2)\n",
"\n",
"$`factor(ethnicity)`\n",
" diff lwr upr p adj\n",
"3-1 2.80000000 -37.301819 42.901819 0.9999935\n",
"4-1 8.42337662 -8.471305 25.318058 0.7597742\n",
"5-1 12.60000000 -10.552796 35.752796 0.6760485\n",
"6-1 7.92145749 -8.532685 24.375600 0.7887025\n",
"7-1 7.85882353 -9.675188 25.392835 0.8397239\n",
"8-1 0.80000000 -21.367114 22.967114 0.9999999\n",
"4-3 5.62337662 -31.221354 42.468107 0.9993601\n",
"5-3 9.80000000 -30.301819 49.901819 0.9911861\n",
"6-3 5.12145749 -31.523361 41.766276 0.9996147\n",
"7-3 5.05882353 -32.083409 42.201056 0.9996681\n",
"8-3 -2.00000000 -41.540926 37.540926 0.9999990\n",
"5-4 4.17662338 -12.718058 21.071305 0.9906258\n",
"6-4 -0.50191913 -4.987128 3.983290 0.9998944\n",
"7-4 -0.56455309 -8.102449 6.973342 0.9999901\n",
"8-4 -7.62337662 -23.139796 7.893043 0.7722323\n",
"6-5 -4.67854251 -21.132685 11.775600 0.9805051\n",
"7-5 -4.74117647 -22.275188 12.792835 0.9849645\n",
"8-5 -11.80000000 -33.967114 10.367114 0.6986642\n",
"7-6 -0.06263396 -6.553273 6.428005 1.0000000\n",
"8-6 -7.12145749 -22.157008 7.914094 0.8012773\n",
"8-7 -7.05882353 -23.269023 9.151376 0.8573731\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"TukeyHSD(model_aov)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
" Df Sum Sq Mean Sq F value Pr(>F) \n",
"sex 1 2102 2102.0 14.033 0.000197 ***\n",
"factor(ethnicity) 6 886 147.7 0.986 0.433467 \n",
"Residuals 614 91970 149.8 \n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model_aov = aov(age ~ sex + factor(ethnicity), data = gaw2)\n",
"summary(model_aov)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
" Df Sum Sq Mean Sq F value Pr(>F) \n",
"sex 1 2102 2102.0 13.971 0.000203 ***\n",
"factor(ethnicity) 6 886 147.7 0.982 0.436457 \n",
"sex:factor(ethnicity) 5 341 68.2 0.454 0.810793 \n",
"Residuals 609 91629 150.5 \n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model_aov = aov(age ~ sex + factor(ethnicity)+sex:factor(ethnicity), data = gaw2)\n",
"summary(model_aov)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" Tukey multiple comparisons of means\n",
" 95% family-wise confidence level\n",
"\n",
"Fit: aov(formula = age ~ sex + factor(ethnicity) + sex:factor(ethnicity), data = gaw2)\n",
"\n",
"$sex\n",
" diff lwr upr p adj\n",
"M-F 3.941077 1.870375 6.011778 0.0002032\n",
"\n",
"$`factor(ethnicity)`\n",
" diff lwr upr p adj\n",
"3-1 1.22356938 -38.525685 40.972823 1.0000000\n",
"4-1 8.22888194 -8.517266 24.975030 0.7720689\n",
"5-1 13.38821531 -9.561027 36.337458 0.5989322\n",
"6-1 7.57362158 -8.735860 23.883103 0.8157465\n",
"7-1 7.67336110 -9.706496 25.053218 0.8491100\n",
"8-1 -0.11958453 -22.091811 21.852642 1.0000000\n",
"4-3 7.00531255 -29.515489 43.526114 0.9976605\n",
"5-3 12.16464592 -27.584608 51.913900 0.9717053\n",
"6-3 6.35005220 -29.972594 42.672699 0.9986118\n",
"7-3 6.44979172 -30.365896 43.265480 0.9985952\n",
"8-3 -1.34315391 -40.536447 37.850139 0.9999999\n",
"5-4 5.15933337 -11.586814 21.905481 0.9707438\n",
"6-4 -0.65526035 -5.101036 3.790516 0.9994763\n",
"7-4 -0.55552083 -8.027145 6.916103 0.9999905\n",
"8-4 -8.34846646 -23.728469 7.031536 0.6786972\n",
"6-5 -5.81459372 -22.124075 10.494888 0.9407663\n",
"7-5 -5.71485420 -23.094711 11.665003 0.9596972\n",
"8-5 -13.50779983 -35.480027 8.464427 0.5359012\n",
"7-6 0.09973952 -6.333836 6.533315 1.0000000\n",
"8-6 -7.69320611 -22.596569 7.210156 0.7284461\n",
"8-7 -7.79294563 -23.860629 8.274738 0.7827705\n",
"\n",
"$`sex:factor(ethnicity)`\n",
" diff lwr upr p adj\n",
"M:1-F:1 -0.5000000 -38.2055138 37.205514 1.0000000\n",
"F:3-F:1 NA NA NA NA\n",
"M:3-F:1 2.5000000 -48.0872552 53.087255 1.0000000\n",
"F:4-F:1 7.2037037 -23.0652637 37.472671 0.9999408\n",
"M:4-F:1 8.6200000 -21.1649694 38.404969 0.9994793\n",
"F:5-F:1 10.5000000 -27.2055138 48.205514 0.9996569\n",
"M:5-F:1 15.0000000 -26.3043209 56.304321 0.9947147\n",
"F:6-F:1 4.4155844 -24.9800222 33.811191 0.9999998\n",
"M:6-F:1 9.0735294 -20.2188117 38.365871 0.9989296\n",
"F:7-F:1 5.0000000 -26.5466962 36.546696 0.9999995\n",
"M:7-F:1 8.9545455 -21.5507172 39.459808 0.9993938\n",
"F:8-F:1 8.5000000 -42.0872552 59.087255 0.9999991\n",
"M:8-F:1 -1.1000000 -35.6576742 33.457674 1.0000000\n",
"F:3-M:1 NA NA NA NA\n",
"M:3-M:1 3.0000000 -44.6941216 50.694122 1.0000000\n",
"F:4-M:1 7.7037037 -17.4333055 32.840713 0.9990428\n",
"M:4-M:1 9.1200000 -15.4320518 33.672052 0.9934459\n",
"F:5-M:1 11.0000000 -22.7248368 44.724837 0.9981760\n",
"M:5-M:1 15.5000000 -22.2055138 53.205514 0.9834851\n",
"F:6-M:1 4.9155844 -19.1626326 28.993801 0.9999901\n",
"M:6-M:1 9.5735294 -14.3785080 33.525567 0.9871253\n",
"F:7-M:1 5.5000000 -21.1618245 32.161825 0.9999888\n",
"M:7-M:1 9.4545455 -15.9665068 34.875598 0.9933684\n",
"F:8-M:1 9.0000000 -38.6941216 56.694122 0.9999961\n",
"M:8-M:1 -0.6000000 -30.7644111 29.564411 1.0000000\n",
"M:3-F:3 NA NA NA NA\n",
"F:4-F:3 NA NA NA NA\n",
"M:4-F:3 NA NA NA NA\n",
"F:5-F:3 NA NA NA NA\n",
"M:5-F:3 NA NA NA NA\n",
"F:6-F:3 NA NA NA NA\n",
"M:6-F:3 NA NA NA NA\n",
"F:7-F:3 NA NA NA NA\n",
"M:7-F:3 NA NA NA NA\n",
"F:8-F:3 NA NA NA NA\n",
"M:8-F:3 NA NA NA NA\n",
"F:4-M:3 4.7037037 -37.3585579 46.765965 1.0000000\n",
"M:4-M:3 6.1200000 -35.5953193 47.835319 0.9999998\n",
"F:5-M:3 8.0000000 -39.6941216 55.694122 0.9999991\n",
"M:5-M:3 12.5000000 -38.0872552 63.087255 0.9999093\n",
"F:6-M:3 1.9155844 -39.5226245 43.353793 1.0000000\n",
"M:6-M:3 6.5735294 -34.7914886 47.938547 0.9999995\n",
"F:7-M:3 2.5000000 -40.4909003 45.490900 1.0000000\n",
"M:7-M:3 6.4545455 -35.7780784 48.687169 0.9999997\n",
"F:8-M:3 6.0000000 -52.4131308 64.413131 1.0000000\n",
"M:8-M:3 -3.6000000 -48.8466166 41.646617 1.0000000\n",
"M:4-F:4 1.4162963 -8.4481784 11.280771 0.9999999\n",
"F:5-F:4 3.2962963 -21.8407129 28.433306 1.0000000\n",
"M:5-F:4 7.7962963 -22.4726711 38.065264 0.9998552\n",
"F:6-F:4 -2.7881193 -11.4058423 5.829604 0.9983211\n",
"M:6-F:4 1.8698257 -6.3887885 10.128440 0.9999667\n",
"F:7-F:4 -2.2037037 -16.5340038 12.126596 0.9999997\n",
"M:7-F:4 1.7508418 -10.1123160 13.613999 0.9999998\n",
"F:8-F:4 1.2962963 -40.7659653 43.358558 1.0000000\n",
"M:8-F:4 -8.3037037 -28.4133111 11.805904 0.9828265\n",
"F:5-M:4 1.8800000 -22.6720518 26.432052 1.0000000\n",
"M:5-M:4 6.3800000 -23.4049694 36.164969 0.9999826\n",
"F:6-M:4 -4.2044156 -10.9274480 2.518617 0.6971470\n",
"M:6-M:4 0.4535294 -5.8025655 6.709624 1.0000000\n",
"F:7-M:4 -3.6200000 -16.8974815 9.657482 0.9997279\n",
"M:7-M:4 0.3345455 -10.2327875 10.901878 1.0000000\n",
"F:8-M:4 -0.1200000 -41.8353193 41.595319 1.0000000\n",
"M:8-M:4 -9.7200000 -29.0934438 9.653444 0.9192230\n",
"M:5-F:5 4.5000000 -33.2055138 42.205514 1.0000000\n",
"F:6-F:5 -6.0844156 -30.1626326 17.993801 0.9998832\n",
"M:6-F:5 -1.4264706 -25.3785080 22.525567 1.0000000\n",
"F:7-F:5 -5.5000000 -32.1618245 21.161825 0.9999888\n",
"M:7-F:5 -1.5454545 -26.9665068 23.875598 1.0000000\n",
"F:8-F:5 -2.0000000 -49.6941216 45.694122 1.0000000\n",
"M:8-F:5 -11.6000000 -41.7644111 18.564411 0.9909389\n",
"F:6-M:5 -10.5844156 -39.9800222 18.811191 0.9951319\n",
"M:6-M:5 -5.9264706 -35.2188117 23.365871 0.9999911\n",
"F:7-M:5 -10.0000000 -41.5466962 21.546696 0.9986394\n",
"M:7-M:5 -6.0454545 -36.5507172 24.459808 0.9999930\n",
"F:8-M:5 -6.5000000 -57.0872552 44.087255 1.0000000\n",
"M:8-M:5 -16.1000000 -50.6576742 18.457674 0.9534510\n",
"M:6-F:6 4.6579450 0.6459615 8.669929 0.0077289\n",
"F:7-F:6 0.5844156 -11.7949545 12.963786 1.0000000\n",
"M:7-F:6 4.5389610 -4.8751674 13.953089 0.9395524\n",
"F:8-F:6 4.0844156 -37.3537933 45.522624 1.0000000\n",
"M:8-F:6 -5.5155844 -24.2849108 13.253742 0.9993867\n",
"F:7-M:6 -4.0735294 -16.2056505 8.058592 0.9975540\n",
"M:7-M:6 -0.1189840 -9.2055330 8.967565 1.0000000\n",
"F:8-M:6 -0.5735294 -41.9385474 40.791489 1.0000000\n",
"M:8-M:6 -10.1735294 -28.7807100 8.433651 0.8564739\n",
"M:7-F:7 3.9545455 -10.8683478 18.777439 0.9997858\n",
"F:8-F:7 3.5000000 -39.4909003 46.490900 1.0000000\n",
"M:8-F:7 -6.1000000 -28.0859037 15.885904 0.9996704\n",
"F:8-M:7 -0.4545455 -42.6871693 41.778078 1.0000000\n",
"M:8-M:7 -10.0545455 -30.5180978 10.409007 0.9305073\n",
"M:8-F:8 -9.6000000 -54.8466166 35.646617 0.9999844\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"TukeyHSD(model_aov)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" \n",
" 1 3 4 5 6 7 8\n",
" F 2 0 27 3 154 12 1\n",
" M 3 1 50 2 340 22 5"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"table(gaw2$sex, gaw2$ethnicity)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" Df Sum Sq Mean Sq F value Pr(>F) \n",
"sex 1 2102 2102.0 13.971 0.000203 ***\n",
"factor(ethnicity) 6 886 147.7 0.982 0.436457 \n",
"sex:factor(ethnicity) 5 341 68.2 0.454 0.810793 \n",
"Residuals 609 91629 150.5 \n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model_aov = aov(age ~ sex * factor(ethnicity), data = gaw2)\n",
"summary(model_aov)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" | Df | Sum Sq | Mean Sq | F value | Pr(>F) |
\n",
"\n",
"\tsex | 1 | 2102.0004 | 2102.00042 | 13.9707237 | 0.0002031662 |
\n",
"\tfactor(ethnicity) | 6 | 886.4661 | 147.74435 | 0.9819672 | 0.4364571083 |
\n",
"\tsex:factor(ethnicity) | 5 | 341.2008 | 68.24015 | 0.4535510 | 0.8107927572 |
\n",
"\tResiduals | 609 | 91628.6285 | 150.45752 | NA | NA |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|lllll}\n",
" & Df & Sum Sq & Mean Sq & F value & Pr(>F)\\\\\n",
"\\hline\n",
"\tsex & 1 & 2102.0004 & 2102.00042 & 13.9707237 & 0.0002031662\\\\\n",
"\tfactor(ethnicity) & 6 & 886.4661 & 147.74435 & 0.9819672 & 0.4364571083\\\\\n",
"\tsex:factor(ethnicity) & 5 & 341.2008 & 68.24015 & 0.4535510 & 0.8107927572\\\\\n",
"\tResiduals & 609 & 91628.6285 & 150.45752 & NA & NA\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"| | Df | Sum Sq | Mean Sq | F value | Pr(>F) |\n",
"|---|---|---|---|---|---|\n",
"| sex | 1 | 2102.0004 | 2102.00042 | 13.9707237 | 0.0002031662 |\n",
"| factor(ethnicity) | 6 | 886.4661 | 147.74435 | 0.9819672 | 0.4364571083 |\n",
"| sex:factor(ethnicity) | 5 | 341.2008 | 68.24015 | 0.4535510 | 0.8107927572 |\n",
"| Residuals | 609 | 91628.6285 | 150.45752 | NA | NA |\n",
"\n"
],
"text/plain": [
" Df Sum Sq Mean Sq F value Pr(>F) \n",
"sex 1 2102.0004 2102.00042 13.9707237 0.0002031662\n",
"factor(ethnicity) 6 886.4661 147.74435 0.9819672 0.4364571083\n",
"sex:factor(ethnicity) 5 341.2008 68.24015 0.4535510 0.8107927572\n",
"Residuals 609 91628.6285 150.45752 NA NA"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model_aov = lm(age ~ sex + factor(ethnicity)+sex:factor(ethnicity), data = gaw2)\n",
"anova(model_aov)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Regresja logistyczna"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
" 0 1 \n",
"199 423 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"glm(formula = sex2 ~ age + packsDay, family = binomial(), data = gaw2)\n",
"\n",
"Deviance Residuals: \n",
" Min 1Q Median 3Q Max \n",
"-2.1614 -1.3835 0.7861 0.9294 1.0783 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error z value Pr(>|z|) \n",
"(Intercept) -0.120460 0.308961 -0.390 0.6966 \n",
"age 0.019888 0.009262 2.147 0.0318 *\n",
"packsDay 0.007054 0.005015 1.406 0.1596 \n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n",
"\n",
"(Dispersion parameter for binomial family taken to be 1)\n",
"\n",
" Null deviance: 779.77 on 621 degrees of freedom\n",
"Residual deviance: 763.27 on 619 degrees of freedom\n",
"AIC: 769.27\n",
"\n",
"Number of Fisher Scoring iterations: 4\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"gaw2$sex2 = 0\n",
"gaw2$sex2[gaw2$sex == 'M'] = 1\n",
"table(gaw2$sex2)\n",
"\n",
"model_log = glm(sex2 ~ age + packsDay, data = gaw2, family = binomial())\n",
"summary(model_log)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
" \n",
"p2 0 1\n",
" 1 199 423"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"\n",
" 0 1 \n",
"199 423 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"p = predict(model_log, type = 'response')\n",
"p2 = rep(0, length(p))\n",
"p2[p > 0.5] = 1\n",
"table(p2, gaw2$sex2)\n",
"table(gaw2$sex2)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" p2\n",
" 0 1\n",
" 0 153 46\n",
" 1 277 146"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"\n",
" 0 1 \n",
"199 423 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"p = predict(model_log, type = 'response')\n",
"p2 = rep(0, length(p))\n",
"p2[p > 0.7] = 1\n",
"table(gaw2$sex2,p2)\n",
"table(gaw2$sex2)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}