

LncRNAs Variability in Porcine Skeletal Muscle

Bartłomiej Hofman, Magdalena Fraszczak, Joanna Szyda, Magda Mielczarek

Biostatistics Group, Wrocław University of Environmental and Life Sciences

Objectivnes

- to investigate the variability of IncRNAs among pigs in context of their number, length, expression
- to investigate the **impact of IncRNA on the expression** of their potential target genes

- RNA-seq data sequenced with the Illumina NovaSeq 6000
- 6 Polish Landrace boars
- muscle tissue (*longissimus dorsi*)

Methods

Bioinformatics pipeline

- Quality control (FastQC and MultiQC)
- Alignment to Sscrofa11.1 reference genome (HISAT2)
- Post-aligment processing (Samtools)
- Quantification of gene expression (StringTie)
- LncRNA filtration

Statistical analysis

- Descriptive statistics
- Statistical tests
 - χ^2 test
 - Kolmogorov Lilliefors test
 - Kruskall Walis test
 - Dunn test
 - Quade test
 - Wilcoxon signed rank of test
- log fold change
- Pearson correlation
- Fisher Exact test

- 241, 605, 646 337, 017, 230 raw reads/individual
- 87.21 to 91.51% of reads remained after editing

Results - numbers

- interindyvidual differences in numbers IncRNA
- 341 812 known transcripts

Results - numbers

- interindyvidual differences in numbers IncRNA
- 341 812 known transcripts
- 949 2,689 novel transcripts

Results - 232 common IncRNA

Magdalena Fraszczak magdalena.fraszczak@upwr.edu.pl

PTBI 2023

9

Results - length and expression

no linear correlation between the lncRNAs length and their expression level \Longrightarrow the expression was not biased by some extraordinary long/short lncRNAs

significant inter-individual variability in the expression level (FPKM) of IncRNA common for all boars - $P = 4.52 \cdot 10^{-15}$ (Quade test for dependent pairs)

Results - expression

Magdalena Fraszczak magdalena.fraszczak@upwr.edu.pl

PTBI 2023

Results - log fold change

co-expression (605 IncRNA related protein-coding genes)

- regulation of cellular metabolic process
- regulation of apoptotic signalling pathway
- positive regulation of apoptotic process
- mitochondrial electron transport
- mitochondrial respiratory chain complex I assembly
- translation
- rRNA processing
- cellular response to lipopolysaccharide

- ribosome assembly
- ribosomal large subunit biogenesis
- ribosomal small, subunit biogenesis
- protein-RNA complex assembly
- protein-DNA complex disassembly
- negative regulation of protein modification process
- mRNA splicing, via spliceosome
- nucleocytoplasmic transport

co-localization (1585 IncRNA related protein-coding genes)

- protein modification by small protein conjugation or removal
- RNA metabolic process
- response to stress
- underrepresentation of G protein-coupled receptor signalling pathway
- detection of chemical stimulus involved in sensory perception of smell

Conclusions

- Individuals significantly varied in IncRNA number, length, and expression
- No consistent pattern has been found between pairs of half-brothers
- The co-expression analysis revealed 605 and co-localization 1,585 related protein-coding genes
- shared IncRNA target genes determined a variety of biological processes that play fundamental roles in cell biology and they were mostly related to whole-body homeostasis maintenance, energy and protein synthesis as well as dynamics of multiple nucleoprotein complexes.

THANK YOU FOR YOUR ATTENTION!

Biostatistics Group Department of Genetics Wrocław University of Environmental and Life Sciences http://theta.edu.pl

