Magdalena Fraszczak - current project

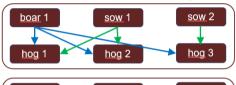
Biostatistics Group, Wrocław University of Environmental and Life Sciences

Current project

Inheritance analysis of copy number variation polymorphisms in swine genome

Current project

Inheritance analysis of copy number variation polymorphisms in swine genome


Internal project - financed by UPWr.

co-authors: Magda Mielczarek, Błażej Nowak, Joanna Szyda

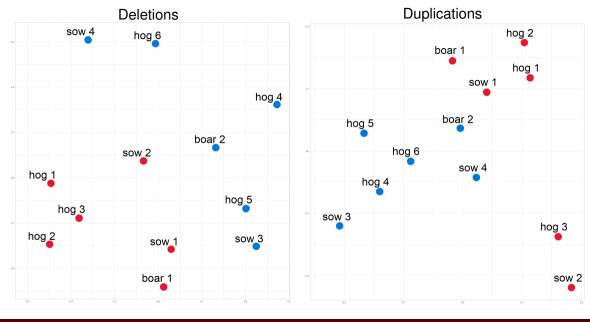
Material

- Whole genome sequence with Ilumina HiSeq2000
- 12 swines (6 trios) Polish Large White breed:

Objectives

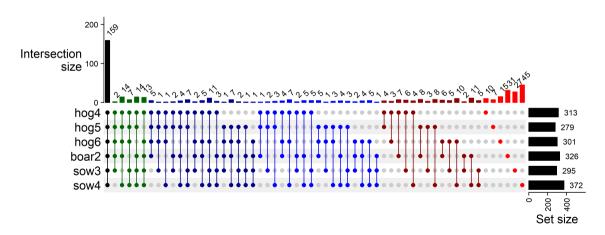
- to analyse of CNV inheritance in full and half siblings
- to determine the frequency of CNVs formed de novo in the genomes of the offspring
- to describe the distribution of CNVs.
- to describe the density of SNPs along the genome

Methods



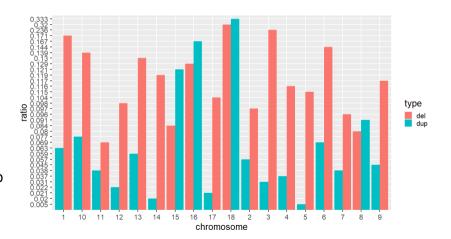
Bioinformatics pipeline

- Alignment to Sscrofa11.1 (BWA-MEM)
- Post alignment filtering (Picard & Samtools)
- CNV detection (CNVnator, Pindel)
- Functional annotation (VeP)

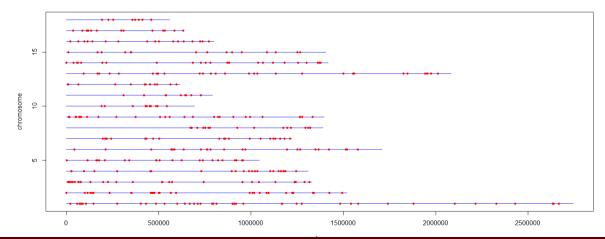

Statistical analysis

- Descriptive statistics
- Kołmogorov-Lilliefors test
- Wilcoxon signed rank test
- Permutation test
- U- Mann Withney test
- Multidimensional scalling
- Test for fraction

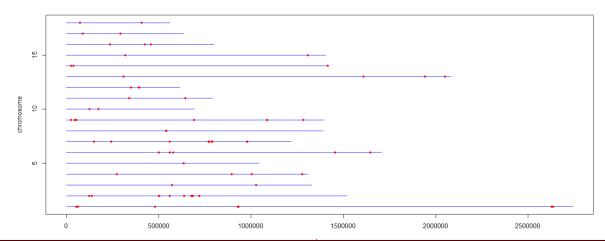
Results - common duplications



Results - de novo CNVs



- deletions422 (47 117)
- duplications
 96 (7 28)
- 72 CNV chr 1
 55 del, 17 dup


Results - density of *de novo* deletions along the genome

Results - density of *de novo* duplications along the genome

• CNVs formed de novo account for 2%-15% of all CNVs

- CNVs formed de novo account for 2%-15% of all CNVs
- deletions formed de novo are shorter than inherited

- CNVs formed de novo account for 2%-15% of all CNVs
- deletions formed de novo are shorter than inherited
- no differences in length of *de novo* and inherited duplications

- CNVs formed de novo account for 2%-15% of all CNVs
- deletions formed de novo are shorter than inherited
- no differences in length of *de novo* and inherited duplications
- full siblings are more simmilar each other in structure of CNVs than to other individuals

- CNVs formed de novo account for 2%-15% of all CNVs
- deletions formed de novo are shorter than inherited
- no differences in length of *de novo* and inherited duplications
- full siblings are more simmilar each other in structure of CNVs than to other individuals
- Most of inherited deletions/duplications chromosome 11/5

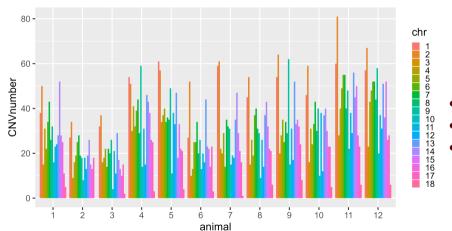
- CNVs formed de novo account for 2%-15% of all CNVs
- deletions formed de novo are shorter than inherited
- no differences in length of *de novo* and inherited duplications
- full siblings are more simmilar each other in structure of CNVs than to other individuals
- Most of inherited deletions/duplications chromosome 11/5
- No differences in numbers of CNV inherited from sow and boar

- CNVs formed de novo account for 2%-15% of all CNVs
- deletions formed de novo are shorter than inherited
- no differences in length of *de novo* and inherited duplications
- full siblings are more simmilar each other in structure of CNVs than to other individuals
- Most of inherited deletions/duplications chromosome 11/5
- No differences in numbers of CNV inherited from sow and boar
- Fraction of de novo CNVs depends on animal in both deletions duplications

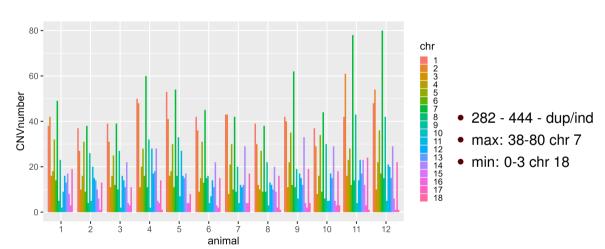
- CNVs formed de novo account for 2%-15% of all CNVs
- deletions formed de novo are shorter than inherited
- no differences in length of *de novo* and inherited duplications
- full siblings are more simmilar each other in structure of CNVs than to other individuals
- Most of inherited deletions/duplications chromosome 11/5
- No differences in numbers of CNV inherited from sow and boar
- Fraction of de novo CNVs depends on animal in both deletions duplications
- de novo CNVs are not uniformly distributed

- CNVs formed de novo account for 2%-15% of all CNVs
- deletions formed de novo are shorter than inherited
- no differences in length of *de novo* and inherited duplications
- full siblings are more simmilar each other in structure of CNVs than to other individuals
- Most of inherited deletions/duplications chromosome 11/5
- No differences in numbers of CNV inherited from sow and boar
- Fraction of de novo CNVs depends on animal in both deletions duplications
- de novo CNVs are not uniformly distributed
- Common duplications in all 12 pigs are related to the regulation of basic biological processes (metabolic and olfactory receptor activity, as well as G protein-coupled receptor signaling pathway)

- CNVs formed de novo account for 2%-15% of all CNVs
- deletions formed de novo are shorter than inherited
- no differences in length of *de novo* and inherited duplications
- full siblings are more simmilar each other in structure of CNVs than to other individuals
- Most of inherited deletions/duplications chromosome 11/5
- No differences in numbers of CNV inherited from sow and boar
- Fraction of de novo CNVs depends on animal in both deletions duplications
- de novo CNVs are not uniformly distributed
- Common duplications in all 12 pigs are related to the regulation of basic biological processes (metabolic and olfactory receptor activity, as well as G protein-coupled receptor signaling pathway)
- Enrichment analysis no significant results found for de novo CNVs


THANK YOU FOR YOUR ATTENTION!

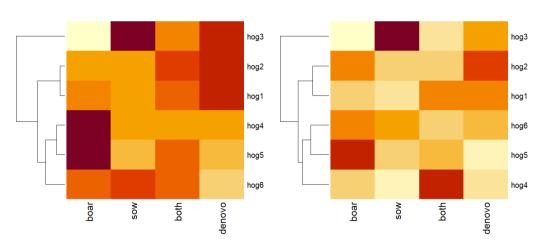
Any questions?



- 325 753 del/ind
- max: 34 81 chr 2
- min: 0-8 chr 18

The length of CNVs

- deletions: 600 195000 bp (average 6662 ± 13001.5)
- duplications: 1200 561400 bp (average 10036 ± 33438.1)


The percentage of genome covered

- deletions: 0.11% 0.21%
- duplications: 0.26%-0.35%

- Most of inherited deletions chromosome 11
- Most of inherited duplications chromosome 5
- No differences in numbers of CNV inherited from sow and boar
 - deletions P = 0.84
 - duplications P = 0.41

- Significantly less CNVs arise de novo than inherited (P=0.008 for deletions, 0.006 for duplications)
- Fraction of de novo CNVs depends on animal in both deletions (P=0.007) duplications (P=0.004)

	hog 1	hog 2	hog 3	hog 4	hog 5	hog 6
deletion	0.129	0.131	0.150	0.111	0.089	0.094
duplication	0.058	0.072	0.045	0.018	0.021	0.044

• De novo deletions are shorter than inherited in all animals.

	hog 1	hog 2	hog 3	hog 4	hog 5	hog 6
P-value	$3.76 \cdot 10^{-5}$	$1.26 \cdot 10^{-6}$	$6.49 \cdot 10^{-7}$	$0.13 \cdot 10^{-1}$	$0.17 \cdot 10^{-3}$	$8.18 \cdot 10^{-7}$

• no differences in length of de novo and inherited duplications

	deletions	duplications	
variants	422	96	
overlapped genes	268	81	
intergenic variant	14%	21%	
genic coding variants	4.2%	13%	
others	81.8%	66%	