{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Wczytywanie danych" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "
familyIDindividualIDIDFatherIDMothersexageethnicityalcoholDependenceAgeOnsetMaxDinkspacksDay
10084 100000891000052610000031F 30 6 5 16 24 17
10084 100007581000052610000031F 31 6 5 30 12 16
\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllllll}\n", " familyID & individualID & IDFather & IDMother & sex & age & ethnicity & alcoholDependence & AgeOnset & MaxDinks & packsDay\\\\\n", "\\hline\n", "\t 10084 & 10000089 & 10000526 & 10000031 & F & 30 & 6 & 5 & 16 & 24 & 17 \\\\\n", "\t 10084 & 10000758 & 10000526 & 10000031 & F & 31 & 6 & 5 & 30 & 12 & 16 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| familyID | individualID | IDFather | IDMother | sex | age | ethnicity | alcoholDependence | AgeOnset | MaxDinks | packsDay |\n", "|---|---|---|---|---|---|---|---|---|---|---|\n", "| 10084 | 10000089 | 10000526 | 10000031 | F | 30 | 6 | 5 | 16 | 24 | 17 |\n", "| 10084 | 10000758 | 10000526 | 10000031 | F | 31 | 6 | 5 | 30 | 12 | 16 |\n", "\n" ], "text/plain": [ " familyID individualID IDFather IDMother sex age ethnicity alcoholDependence\n", "1 10084 10000089 10000526 10000031 F 30 6 5 \n", "2 10084 10000758 10000526 10000031 F 31 6 5 \n", " AgeOnset MaxDinks packsDay\n", "1 16 24 17 \n", "2 30 12 16 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
familyIDindividualIDIDFatherIDMothersexageethnicityalcoholDependenceAgeOnsetMaxDinkspacksDay
160710086 100006631000003510000537M 35 6 5 18 48 15.0
160810086 100000051000003510000537M 30 6 5 16 25 0.0
160910086 100003371000003510000537F 34 6 3 0 10 2.3
161010086 100000351000031410000483M 58 6 5 21 24 0.6
161110086 10000537 0 0F 57 6 1 0 6 0.0
161210086 100001531000031410000483M 57 6 5 25 24 128.0
161310086 10000314 0 0M 0 0 0 0 -9 -9.0
161410086 10000483 0 0F 0 0 0 0 -9 -9.0
\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllllll}\n", " & familyID & individualID & IDFather & IDMother & sex & age & ethnicity & alcoholDependence & AgeOnset & MaxDinks & packsDay\\\\\n", "\\hline\n", "\t1607 & 10086 & 10000663 & 10000035 & 10000537 & M & 35 & 6 & 5 & 18 & 48 & 15.0 \\\\\n", "\t1608 & 10086 & 10000005 & 10000035 & 10000537 & M & 30 & 6 & 5 & 16 & 25 & 0.0 \\\\\n", "\t1609 & 10086 & 10000337 & 10000035 & 10000537 & F & 34 & 6 & 3 & 0 & 10 & 2.3 \\\\\n", "\t1610 & 10086 & 10000035 & 10000314 & 10000483 & M & 58 & 6 & 5 & 21 & 24 & 0.6 \\\\\n", "\t1611 & 10086 & 10000537 & 0 & 0 & F & 57 & 6 & 1 & 0 & 6 & 0.0 \\\\\n", "\t1612 & 10086 & 10000153 & 10000314 & 10000483 & M & 57 & 6 & 5 & 25 & 24 & 128.0 \\\\\n", "\t1613 & 10086 & 10000314 & 0 & 0 & M & 0 & 0 & 0 & 0 & -9 & -9.0 \\\\\n", "\t1614 & 10086 & 10000483 & 0 & 0 & F & 0 & 0 & 0 & 0 & -9 & -9.0 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| | familyID | individualID | IDFather | IDMother | sex | age | ethnicity | alcoholDependence | AgeOnset | MaxDinks | packsDay |\n", "|---|---|---|---|---|---|---|---|---|---|---|---|\n", "| 1607 | 10086 | 10000663 | 10000035 | 10000537 | M | 35 | 6 | 5 | 18 | 48 | 15.0 |\n", "| 1608 | 10086 | 10000005 | 10000035 | 10000537 | M | 30 | 6 | 5 | 16 | 25 | 0.0 |\n", "| 1609 | 10086 | 10000337 | 10000035 | 10000537 | F | 34 | 6 | 3 | 0 | 10 | 2.3 |\n", "| 1610 | 10086 | 10000035 | 10000314 | 10000483 | M | 58 | 6 | 5 | 21 | 24 | 0.6 |\n", "| 1611 | 10086 | 10000537 | 0 | 0 | F | 57 | 6 | 1 | 0 | 6 | 0.0 |\n", "| 1612 | 10086 | 10000153 | 10000314 | 10000483 | M | 57 | 6 | 5 | 25 | 24 | 128.0 |\n", "| 1613 | 10086 | 10000314 | 0 | 0 | M | 0 | 0 | 0 | 0 | -9 | -9.0 |\n", "| 1614 | 10086 | 10000483 | 0 | 0 | F | 0 | 0 | 0 | 0 | -9 | -9.0 |\n", "\n" ], "text/plain": [ " familyID individualID IDFather IDMother sex age ethnicity\n", "1607 10086 10000663 10000035 10000537 M 35 6 \n", "1608 10086 10000005 10000035 10000537 M 30 6 \n", "1609 10086 10000337 10000035 10000537 F 34 6 \n", "1610 10086 10000035 10000314 10000483 M 58 6 \n", "1611 10086 10000537 0 0 F 57 6 \n", "1612 10086 10000153 10000314 10000483 M 57 6 \n", "1613 10086 10000314 0 0 M 0 0 \n", "1614 10086 10000483 0 0 F 0 0 \n", " alcoholDependence AgeOnset MaxDinks packsDay\n", "1607 5 18 48 15.0 \n", "1608 5 16 25 0.0 \n", "1609 3 0 10 2.3 \n", "1610 5 21 24 0.6 \n", "1611 1 0 6 0.0 \n", "1612 5 25 24 128.0 \n", "1613 0 0 -9 -9.0 \n", "1614 0 0 -9 -9.0 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gaw = read.table('http://theta.edu.pl/wp-content/uploads/2019/12/gaw.csv', header = TRUE, \n", " sep = ';', dec = ',')\n", "head(gaw, 2)\n", "tail(gaw, 8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Instalowanie nowych pakietów" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"unable to access index for repository https://cran.r-project.org/bin/windows/contrib/3.6:\n", " nie można otworzyć adresu URL 'https://cran.r-project.org/bin/windows/contrib/3.6/PACKAGES'\"Package which is only available in source form, and may need\n", " compilation of C/C++/Fortran: 'data.table'\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " These will not be installed\n" ] } ], "source": [ "install.packages(\"data.table\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Dodawanie pakietów" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"package 'data.table' was built under R version 3.6.3\"" ] } ], "source": [ "library(data.table)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Użycie nowej funkcji" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "?fread" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "gaw2 = fread('http://theta.edu.pl/wp-content/uploads/2019/12/gaw.csv', dec = \",\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
familyIDindividualIDIDFatherIDMothersexageethnicityalcoholDependenceAgeOnsetMaxDinkspacksDay
10084 100000891000052610000031F 30 6 5 16 24 17.000
10084 100007581000052610000031F 31 6 5 30 12 16.000
10084 10001094 0 0M 0 0 0 0 -9 -9.000
10084 100001331000109410000758M 18 6 3 0 18 0.450
10084 100010391000052610000031M 28 6 5 16 40 0.000
10084 100001941000052610000031F 24 6 3 0 20 8.000
10084 10000526 0 0M 60 6 5 38 24 42.000
10084 10000031 0 0F 60 6 3 0 7 58.500
10130 100015651000143610001364F 38 6 5 18 75 30.000
10130 100009191000143610001364M 40 6 5 33 48 0.000
10130 100002991000143610001364F 32 6 5 17 36 32.000
10130 100004891000143610001364M 27 6 3 0 12 0.000
10130 10001436 0 0M 62 6 3 0 10 42.000
10130 10001364 0 0F 61 6 1 0 5 0.125
10038 100005721000125010001511F 28 6 5 15 48 12.000
10038 100002721000125010001511M 26 6 3 0 10 0.000
10038 100012951000125010001511F 25 6 1 0 3 0.000
10038 100005981000125010001511M 22 6 5 15 71 12.000
10038 10001250 0 0M 68 6 3 0 10 0.000
10038 10001511 0 0F 52 6 3 0 14 31.000
10006 100002641000013010000650M 34 6 5 16 26 0.000
10006 100000251000013010000650M 35 6 5 18 36 13.000
10006 100007071000013010000650M 26 6 5 20 15 6.000
10006 100014051000013010000650F 28 6 5 23 10 0.000
10006 10000130 0 0M 58 6 5 30 24 -9.000
10006 10000650 0 0F 59 6 1 0 3 0.000
10027 10000398 0 0M 58 6 5 24 42 41.000
10027 10000382 0 0F 65 6 1 0 3 0.000
10027 100008611000039810000382F 38 6 3 0 5 14.000
10027 10000915 0 0M 44 1 5 0 20 23.000
.................................
10026 10001144 0 0M 49 6 3 0 24 51.00
10026 10000769 0 0F 53 6 1 0 6 35.00
10005 100013571000001610000066F 40 6 5 39 13 0.00
10005 10000425 0 0M 41 6 3 0 6 0.00
10005 100015471000042510001357M 23 6 5 20 24 4.50
10005 100003501000042510001357M 21 6 5 19 36 6.00
10005 100007471000042510001357F 18 6 1 0 8 0.15
10005 100002671000001610000066F 29 6 1 0 6 0.00
10005 100000491000001610000066F 37 6 5 25 30 10.00
10005 100003931000001610000066F 39 6 3 0 8 19.00
10005 10000016 0 0M 62 6 5 23 52 0.00
10005 10000066 0 0F 58 6 1 0 6 0.00
10138 100003761000082010000516F 29 7 5 18 32 10.00
10138 100005561000082010000516F 27 7 3 0 4 4.50
10138 100013131000082010000516M 40 7 5 25 32 13.00
10138 100003221000082010000516M 39 7 5 22 24 14.00
10138 100002551000082010000516F 41 7 1 0 6 0.00
10138 100014161000082010000516F 35 7 5 21 25 3.00
10138 100009611000082010000516F 38 7 1 0 5 0.00
10138 10000820 0 0M 70 7 5 20 14 39.50
10138 10000516 0 0F 59 6 1 0 2 0.00
10138 100007591000082010000516F 34 7 1 0 1 0.00
10086 100006631000003510000537M 35 6 5 18 48 15.00
10086 100000051000003510000537M 30 6 5 16 25 0.00
10086 100003371000003510000537F 34 6 3 0 10 2.30
10086 100000351000031410000483M 58 6 5 21 24 0.60
10086 10000537 0 0F 57 6 1 0 6 0.00
10086 100001531000031410000483M 57 6 5 25 24 128.00
10086 10000314 0 0M 0 0 0 0 -9 -9.00
10086 10000483 0 0F 0 0 0 0 -9 -9.00
\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllllll}\n", " familyID & individualID & IDFather & IDMother & sex & age & ethnicity & alcoholDependence & AgeOnset & MaxDinks & packsDay\\\\\n", "\\hline\n", "\t 10084 & 10000089 & 10000526 & 10000031 & F & 30 & 6 & 5 & 16 & 24 & 17.000 \\\\\n", "\t 10084 & 10000758 & 10000526 & 10000031 & F & 31 & 6 & 5 & 30 & 12 & 16.000 \\\\\n", "\t 10084 & 10001094 & 0 & 0 & M & 0 & 0 & 0 & 0 & -9 & -9.000 \\\\\n", "\t 10084 & 10000133 & 10001094 & 10000758 & M & 18 & 6 & 3 & 0 & 18 & 0.450 \\\\\n", "\t 10084 & 10001039 & 10000526 & 10000031 & M & 28 & 6 & 5 & 16 & 40 & 0.000 \\\\\n", "\t 10084 & 10000194 & 10000526 & 10000031 & F & 24 & 6 & 3 & 0 & 20 & 8.000 \\\\\n", "\t 10084 & 10000526 & 0 & 0 & M & 60 & 6 & 5 & 38 & 24 & 42.000 \\\\\n", "\t 10084 & 10000031 & 0 & 0 & F & 60 & 6 & 3 & 0 & 7 & 58.500 \\\\\n", "\t 10130 & 10001565 & 10001436 & 10001364 & F & 38 & 6 & 5 & 18 & 75 & 30.000 \\\\\n", "\t 10130 & 10000919 & 10001436 & 10001364 & M & 40 & 6 & 5 & 33 & 48 & 0.000 \\\\\n", "\t 10130 & 10000299 & 10001436 & 10001364 & F & 32 & 6 & 5 & 17 & 36 & 32.000 \\\\\n", "\t 10130 & 10000489 & 10001436 & 10001364 & M & 27 & 6 & 3 & 0 & 12 & 0.000 \\\\\n", "\t 10130 & 10001436 & 0 & 0 & M & 62 & 6 & 3 & 0 & 10 & 42.000 \\\\\n", "\t 10130 & 10001364 & 0 & 0 & F & 61 & 6 & 1 & 0 & 5 & 0.125 \\\\\n", "\t 10038 & 10000572 & 10001250 & 10001511 & F & 28 & 6 & 5 & 15 & 48 & 12.000 \\\\\n", "\t 10038 & 10000272 & 10001250 & 10001511 & M & 26 & 6 & 3 & 0 & 10 & 0.000 \\\\\n", "\t 10038 & 10001295 & 10001250 & 10001511 & F & 25 & 6 & 1 & 0 & 3 & 0.000 \\\\\n", "\t 10038 & 10000598 & 10001250 & 10001511 & M & 22 & 6 & 5 & 15 & 71 & 12.000 \\\\\n", "\t 10038 & 10001250 & 0 & 0 & M & 68 & 6 & 3 & 0 & 10 & 0.000 \\\\\n", "\t 10038 & 10001511 & 0 & 0 & F & 52 & 6 & 3 & 0 & 14 & 31.000 \\\\\n", "\t 10006 & 10000264 & 10000130 & 10000650 & M & 34 & 6 & 5 & 16 & 26 & 0.000 \\\\\n", "\t 10006 & 10000025 & 10000130 & 10000650 & M & 35 & 6 & 5 & 18 & 36 & 13.000 \\\\\n", "\t 10006 & 10000707 & 10000130 & 10000650 & M & 26 & 6 & 5 & 20 & 15 & 6.000 \\\\\n", "\t 10006 & 10001405 & 10000130 & 10000650 & F & 28 & 6 & 5 & 23 & 10 & 0.000 \\\\\n", "\t 10006 & 10000130 & 0 & 0 & M & 58 & 6 & 5 & 30 & 24 & -9.000 \\\\\n", "\t 10006 & 10000650 & 0 & 0 & F & 59 & 6 & 1 & 0 & 3 & 0.000 \\\\\n", "\t 10027 & 10000398 & 0 & 0 & M & 58 & 6 & 5 & 24 & 42 & 41.000 \\\\\n", "\t 10027 & 10000382 & 0 & 0 & F & 65 & 6 & 1 & 0 & 3 & 0.000 \\\\\n", "\t 10027 & 10000861 & 10000398 & 10000382 & F & 38 & 6 & 3 & 0 & 5 & 14.000 \\\\\n", "\t 10027 & 10000915 & 0 & 0 & M & 44 & 1 & 5 & 0 & 20 & 23.000 \\\\\n", "\t ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ...\\\\\n", "\t 10026 & 10001144 & 0 & 0 & M & 49 & 6 & 3 & 0 & 24 & 51.00 \\\\\n", "\t 10026 & 10000769 & 0 & 0 & F & 53 & 6 & 1 & 0 & 6 & 35.00 \\\\\n", "\t 10005 & 10001357 & 10000016 & 10000066 & F & 40 & 6 & 5 & 39 & 13 & 0.00 \\\\\n", "\t 10005 & 10000425 & 0 & 0 & M & 41 & 6 & 3 & 0 & 6 & 0.00 \\\\\n", "\t 10005 & 10001547 & 10000425 & 10001357 & M & 23 & 6 & 5 & 20 & 24 & 4.50 \\\\\n", "\t 10005 & 10000350 & 10000425 & 10001357 & M & 21 & 6 & 5 & 19 & 36 & 6.00 \\\\\n", "\t 10005 & 10000747 & 10000425 & 10001357 & F & 18 & 6 & 1 & 0 & 8 & 0.15 \\\\\n", "\t 10005 & 10000267 & 10000016 & 10000066 & F & 29 & 6 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10005 & 10000049 & 10000016 & 10000066 & F & 37 & 6 & 5 & 25 & 30 & 10.00 \\\\\n", "\t 10005 & 10000393 & 10000016 & 10000066 & F & 39 & 6 & 3 & 0 & 8 & 19.00 \\\\\n", "\t 10005 & 10000016 & 0 & 0 & M & 62 & 6 & 5 & 23 & 52 & 0.00 \\\\\n", "\t 10005 & 10000066 & 0 & 0 & F & 58 & 6 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10138 & 10000376 & 10000820 & 10000516 & F & 29 & 7 & 5 & 18 & 32 & 10.00 \\\\\n", "\t 10138 & 10000556 & 10000820 & 10000516 & F & 27 & 7 & 3 & 0 & 4 & 4.50 \\\\\n", "\t 10138 & 10001313 & 10000820 & 10000516 & M & 40 & 7 & 5 & 25 & 32 & 13.00 \\\\\n", "\t 10138 & 10000322 & 10000820 & 10000516 & M & 39 & 7 & 5 & 22 & 24 & 14.00 \\\\\n", "\t 10138 & 10000255 & 10000820 & 10000516 & F & 41 & 7 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10138 & 10001416 & 10000820 & 10000516 & F & 35 & 7 & 5 & 21 & 25 & 3.00 \\\\\n", "\t 10138 & 10000961 & 10000820 & 10000516 & F & 38 & 7 & 1 & 0 & 5 & 0.00 \\\\\n", "\t 10138 & 10000820 & 0 & 0 & M & 70 & 7 & 5 & 20 & 14 & 39.50 \\\\\n", "\t 10138 & 10000516 & 0 & 0 & F & 59 & 6 & 1 & 0 & 2 & 0.00 \\\\\n", "\t 10138 & 10000759 & 10000820 & 10000516 & F & 34 & 7 & 1 & 0 & 1 & 0.00 \\\\\n", "\t 10086 & 10000663 & 10000035 & 10000537 & M & 35 & 6 & 5 & 18 & 48 & 15.00 \\\\\n", "\t 10086 & 10000005 & 10000035 & 10000537 & M & 30 & 6 & 5 & 16 & 25 & 0.00 \\\\\n", "\t 10086 & 10000337 & 10000035 & 10000537 & F & 34 & 6 & 3 & 0 & 10 & 2.30 \\\\\n", "\t 10086 & 10000035 & 10000314 & 10000483 & M & 58 & 6 & 5 & 21 & 24 & 0.60 \\\\\n", "\t 10086 & 10000537 & 0 & 0 & F & 57 & 6 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10086 & 10000153 & 10000314 & 10000483 & M & 57 & 6 & 5 & 25 & 24 & 128.00 \\\\\n", "\t 10086 & 10000314 & 0 & 0 & M & 0 & 0 & 0 & 0 & -9 & -9.00 \\\\\n", "\t 10086 & 10000483 & 0 & 0 & F & 0 & 0 & 0 & 0 & -9 & -9.00 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| familyID | individualID | IDFather | IDMother | sex | age | ethnicity | alcoholDependence | AgeOnset | MaxDinks | packsDay |\n", "|---|---|---|---|---|---|---|---|---|---|---|\n", "| 10084 | 10000089 | 10000526 | 10000031 | F | 30 | 6 | 5 | 16 | 24 | 17.000 |\n", "| 10084 | 10000758 | 10000526 | 10000031 | F | 31 | 6 | 5 | 30 | 12 | 16.000 |\n", "| 10084 | 10001094 | 0 | 0 | M | 0 | 0 | 0 | 0 | -9 | -9.000 |\n", "| 10084 | 10000133 | 10001094 | 10000758 | M | 18 | 6 | 3 | 0 | 18 | 0.450 |\n", "| 10084 | 10001039 | 10000526 | 10000031 | M | 28 | 6 | 5 | 16 | 40 | 0.000 |\n", "| 10084 | 10000194 | 10000526 | 10000031 | F | 24 | 6 | 3 | 0 | 20 | 8.000 |\n", "| 10084 | 10000526 | 0 | 0 | M | 60 | 6 | 5 | 38 | 24 | 42.000 |\n", "| 10084 | 10000031 | 0 | 0 | F | 60 | 6 | 3 | 0 | 7 | 58.500 |\n", "| 10130 | 10001565 | 10001436 | 10001364 | F | 38 | 6 | 5 | 18 | 75 | 30.000 |\n", "| 10130 | 10000919 | 10001436 | 10001364 | M | 40 | 6 | 5 | 33 | 48 | 0.000 |\n", "| 10130 | 10000299 | 10001436 | 10001364 | F | 32 | 6 | 5 | 17 | 36 | 32.000 |\n", "| 10130 | 10000489 | 10001436 | 10001364 | M | 27 | 6 | 3 | 0 | 12 | 0.000 |\n", "| 10130 | 10001436 | 0 | 0 | M | 62 | 6 | 3 | 0 | 10 | 42.000 |\n", "| 10130 | 10001364 | 0 | 0 | F | 61 | 6 | 1 | 0 | 5 | 0.125 |\n", "| 10038 | 10000572 | 10001250 | 10001511 | F | 28 | 6 | 5 | 15 | 48 | 12.000 |\n", "| 10038 | 10000272 | 10001250 | 10001511 | M | 26 | 6 | 3 | 0 | 10 | 0.000 |\n", "| 10038 | 10001295 | 10001250 | 10001511 | F | 25 | 6 | 1 | 0 | 3 | 0.000 |\n", "| 10038 | 10000598 | 10001250 | 10001511 | M | 22 | 6 | 5 | 15 | 71 | 12.000 |\n", "| 10038 | 10001250 | 0 | 0 | M | 68 | 6 | 3 | 0 | 10 | 0.000 |\n", "| 10038 | 10001511 | 0 | 0 | F | 52 | 6 | 3 | 0 | 14 | 31.000 |\n", "| 10006 | 10000264 | 10000130 | 10000650 | M | 34 | 6 | 5 | 16 | 26 | 0.000 |\n", "| 10006 | 10000025 | 10000130 | 10000650 | M | 35 | 6 | 5 | 18 | 36 | 13.000 |\n", "| 10006 | 10000707 | 10000130 | 10000650 | M | 26 | 6 | 5 | 20 | 15 | 6.000 |\n", "| 10006 | 10001405 | 10000130 | 10000650 | F | 28 | 6 | 5 | 23 | 10 | 0.000 |\n", "| 10006 | 10000130 | 0 | 0 | M | 58 | 6 | 5 | 30 | 24 | -9.000 |\n", "| 10006 | 10000650 | 0 | 0 | F | 59 | 6 | 1 | 0 | 3 | 0.000 |\n", "| 10027 | 10000398 | 0 | 0 | M | 58 | 6 | 5 | 24 | 42 | 41.000 |\n", "| 10027 | 10000382 | 0 | 0 | F | 65 | 6 | 1 | 0 | 3 | 0.000 |\n", "| 10027 | 10000861 | 10000398 | 10000382 | F | 38 | 6 | 3 | 0 | 5 | 14.000 |\n", "| 10027 | 10000915 | 0 | 0 | M | 44 | 1 | 5 | 0 | 20 | 23.000 |\n", "| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |\n", "| 10026 | 10001144 | 0 | 0 | M | 49 | 6 | 3 | 0 | 24 | 51.00 |\n", "| 10026 | 10000769 | 0 | 0 | F | 53 | 6 | 1 | 0 | 6 | 35.00 |\n", "| 10005 | 10001357 | 10000016 | 10000066 | F | 40 | 6 | 5 | 39 | 13 | 0.00 |\n", "| 10005 | 10000425 | 0 | 0 | M | 41 | 6 | 3 | 0 | 6 | 0.00 |\n", "| 10005 | 10001547 | 10000425 | 10001357 | M | 23 | 6 | 5 | 20 | 24 | 4.50 |\n", "| 10005 | 10000350 | 10000425 | 10001357 | M | 21 | 6 | 5 | 19 | 36 | 6.00 |\n", "| 10005 | 10000747 | 10000425 | 10001357 | F | 18 | 6 | 1 | 0 | 8 | 0.15 |\n", "| 10005 | 10000267 | 10000016 | 10000066 | F | 29 | 6 | 1 | 0 | 6 | 0.00 |\n", "| 10005 | 10000049 | 10000016 | 10000066 | F | 37 | 6 | 5 | 25 | 30 | 10.00 |\n", "| 10005 | 10000393 | 10000016 | 10000066 | F | 39 | 6 | 3 | 0 | 8 | 19.00 |\n", "| 10005 | 10000016 | 0 | 0 | M | 62 | 6 | 5 | 23 | 52 | 0.00 |\n", "| 10005 | 10000066 | 0 | 0 | F | 58 | 6 | 1 | 0 | 6 | 0.00 |\n", "| 10138 | 10000376 | 10000820 | 10000516 | F | 29 | 7 | 5 | 18 | 32 | 10.00 |\n", "| 10138 | 10000556 | 10000820 | 10000516 | F | 27 | 7 | 3 | 0 | 4 | 4.50 |\n", "| 10138 | 10001313 | 10000820 | 10000516 | M | 40 | 7 | 5 | 25 | 32 | 13.00 |\n", "| 10138 | 10000322 | 10000820 | 10000516 | M | 39 | 7 | 5 | 22 | 24 | 14.00 |\n", "| 10138 | 10000255 | 10000820 | 10000516 | F | 41 | 7 | 1 | 0 | 6 | 0.00 |\n", "| 10138 | 10001416 | 10000820 | 10000516 | F | 35 | 7 | 5 | 21 | 25 | 3.00 |\n", "| 10138 | 10000961 | 10000820 | 10000516 | F | 38 | 7 | 1 | 0 | 5 | 0.00 |\n", "| 10138 | 10000820 | 0 | 0 | M | 70 | 7 | 5 | 20 | 14 | 39.50 |\n", "| 10138 | 10000516 | 0 | 0 | F | 59 | 6 | 1 | 0 | 2 | 0.00 |\n", "| 10138 | 10000759 | 10000820 | 10000516 | F | 34 | 7 | 1 | 0 | 1 | 0.00 |\n", "| 10086 | 10000663 | 10000035 | 10000537 | M | 35 | 6 | 5 | 18 | 48 | 15.00 |\n", "| 10086 | 10000005 | 10000035 | 10000537 | M | 30 | 6 | 5 | 16 | 25 | 0.00 |\n", "| 10086 | 10000337 | 10000035 | 10000537 | F | 34 | 6 | 3 | 0 | 10 | 2.30 |\n", "| 10086 | 10000035 | 10000314 | 10000483 | M | 58 | 6 | 5 | 21 | 24 | 0.60 |\n", "| 10086 | 10000537 | 0 | 0 | F | 57 | 6 | 1 | 0 | 6 | 0.00 |\n", "| 10086 | 10000153 | 10000314 | 10000483 | M | 57 | 6 | 5 | 25 | 24 | 128.00 |\n", "| 10086 | 10000314 | 0 | 0 | M | 0 | 0 | 0 | 0 | -9 | -9.00 |\n", "| 10086 | 10000483 | 0 | 0 | F | 0 | 0 | 0 | 0 | -9 | -9.00 |\n", "\n" ], "text/plain": [ " familyID individualID IDFather IDMother sex age ethnicity\n", "1 10084 10000089 10000526 10000031 F 30 6 \n", "2 10084 10000758 10000526 10000031 F 31 6 \n", "3 10084 10001094 0 0 M 0 0 \n", "4 10084 10000133 10001094 10000758 M 18 6 \n", "5 10084 10001039 10000526 10000031 M 28 6 \n", "6 10084 10000194 10000526 10000031 F 24 6 \n", "7 10084 10000526 0 0 M 60 6 \n", "8 10084 10000031 0 0 F 60 6 \n", "9 10130 10001565 10001436 10001364 F 38 6 \n", "10 10130 10000919 10001436 10001364 M 40 6 \n", "11 10130 10000299 10001436 10001364 F 32 6 \n", "12 10130 10000489 10001436 10001364 M 27 6 \n", "13 10130 10001436 0 0 M 62 6 \n", "14 10130 10001364 0 0 F 61 6 \n", "15 10038 10000572 10001250 10001511 F 28 6 \n", "16 10038 10000272 10001250 10001511 M 26 6 \n", "17 10038 10001295 10001250 10001511 F 25 6 \n", "18 10038 10000598 10001250 10001511 M 22 6 \n", "19 10038 10001250 0 0 M 68 6 \n", "20 10038 10001511 0 0 F 52 6 \n", "21 10006 10000264 10000130 10000650 M 34 6 \n", "22 10006 10000025 10000130 10000650 M 35 6 \n", "23 10006 10000707 10000130 10000650 M 26 6 \n", "24 10006 10001405 10000130 10000650 F 28 6 \n", "25 10006 10000130 0 0 M 58 6 \n", "26 10006 10000650 0 0 F 59 6 \n", "27 10027 10000398 0 0 M 58 6 \n", "28 10027 10000382 0 0 F 65 6 \n", "29 10027 10000861 10000398 10000382 F 38 6 \n", "30 10027 10000915 0 0 M 44 1 \n", "... ... ... ... ... ... ... ... \n", "1585 10026 10001144 0 0 M 49 6 \n", "1586 10026 10000769 0 0 F 53 6 \n", "1587 10005 10001357 10000016 10000066 F 40 6 \n", "1588 10005 10000425 0 0 M 41 6 \n", "1589 10005 10001547 10000425 10001357 M 23 6 \n", "1590 10005 10000350 10000425 10001357 M 21 6 \n", "1591 10005 10000747 10000425 10001357 F 18 6 \n", "1592 10005 10000267 10000016 10000066 F 29 6 \n", "1593 10005 10000049 10000016 10000066 F 37 6 \n", "1594 10005 10000393 10000016 10000066 F 39 6 \n", "1595 10005 10000016 0 0 M 62 6 \n", "1596 10005 10000066 0 0 F 58 6 \n", "1597 10138 10000376 10000820 10000516 F 29 7 \n", "1598 10138 10000556 10000820 10000516 F 27 7 \n", "1599 10138 10001313 10000820 10000516 M 40 7 \n", "1600 10138 10000322 10000820 10000516 M 39 7 \n", "1601 10138 10000255 10000820 10000516 F 41 7 \n", "1602 10138 10001416 10000820 10000516 F 35 7 \n", "1603 10138 10000961 10000820 10000516 F 38 7 \n", "1604 10138 10000820 0 0 M 70 7 \n", "1605 10138 10000516 0 0 F 59 6 \n", "1606 10138 10000759 10000820 10000516 F 34 7 \n", "1607 10086 10000663 10000035 10000537 M 35 6 \n", "1608 10086 10000005 10000035 10000537 M 30 6 \n", "1609 10086 10000337 10000035 10000537 F 34 6 \n", "1610 10086 10000035 10000314 10000483 M 58 6 \n", "1611 10086 10000537 0 0 F 57 6 \n", "1612 10086 10000153 10000314 10000483 M 57 6 \n", "1613 10086 10000314 0 0 M 0 0 \n", "1614 10086 10000483 0 0 F 0 0 \n", " alcoholDependence AgeOnset MaxDinks packsDay\n", "1 5 16 24 17.000 \n", "2 5 30 12 16.000 \n", "3 0 0 -9 -9.000 \n", "4 3 0 18 0.450 \n", "5 5 16 40 0.000 \n", "6 3 0 20 8.000 \n", "7 5 38 24 42.000 \n", "8 3 0 7 58.500 \n", "9 5 18 75 30.000 \n", "10 5 33 48 0.000 \n", "11 5 17 36 32.000 \n", "12 3 0 12 0.000 \n", "13 3 0 10 42.000 \n", "14 1 0 5 0.125 \n", "15 5 15 48 12.000 \n", "16 3 0 10 0.000 \n", "17 1 0 3 0.000 \n", "18 5 15 71 12.000 \n", "19 3 0 10 0.000 \n", "20 3 0 14 31.000 \n", "21 5 16 26 0.000 \n", "22 5 18 36 13.000 \n", "23 5 20 15 6.000 \n", "24 5 23 10 0.000 \n", "25 5 30 24 -9.000 \n", "26 1 0 3 0.000 \n", "27 5 24 42 41.000 \n", "28 1 0 3 0.000 \n", "29 3 0 5 14.000 \n", "30 5 0 20 23.000 \n", "... ... ... ... ... \n", "1585 3 0 24 51.00 \n", "1586 1 0 6 35.00 \n", "1587 5 39 13 0.00 \n", "1588 3 0 6 0.00 \n", "1589 5 20 24 4.50 \n", "1590 5 19 36 6.00 \n", "1591 1 0 8 0.15 \n", "1592 1 0 6 0.00 \n", "1593 5 25 30 10.00 \n", "1594 3 0 8 19.00 \n", "1595 5 23 52 0.00 \n", "1596 1 0 6 0.00 \n", "1597 5 18 32 10.00 \n", "1598 3 0 4 4.50 \n", "1599 5 25 32 13.00 \n", "1600 5 22 24 14.00 \n", "1601 1 0 6 0.00 \n", "1602 5 21 25 3.00 \n", "1603 1 0 5 0.00 \n", "1604 5 20 14 39.50 \n", "1605 1 0 2 0.00 \n", "1606 1 0 1 0.00 \n", "1607 5 18 48 15.00 \n", "1608 5 16 25 0.00 \n", "1609 3 0 10 2.30 \n", "1610 5 21 24 0.60 \n", "1611 1 0 6 0.00 \n", "1612 5 25 24 128.00 \n", "1613 0 0 -9 -9.00 \n", "1614 0 0 -9 -9.00 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gaw2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Eksploracja danych" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ " familyID individualID IDFather IDMother sex \n", " Min. :10001 Min. :1e+07 Min. : 0 Min. : 0 F:788 \n", " 1st Qu.:10033 1st Qu.:1e+07 1st Qu.: 0 1st Qu.: 0 M:826 \n", " Median :10068 Median :1e+07 Median :10000446 Median :10000403 \n", " Mean :10070 Mean :1e+07 Mean : 6871685 Mean : 6871658 \n", " 3rd Qu.:10106 3rd Qu.:1e+07 3rd Qu.:10001052 3rd Qu.:10001005 \n", " Max. :10143 Max. :1e+07 Max. :10001609 Max. :10001607 \n", " age ethnicity alcoholDependence AgeOnset \n", " Min. : 0.00 Min. :0.000 Min. :0.000 Min. : 0.000 \n", " 1st Qu.:23.00 1st Qu.:4.000 1st Qu.:1.000 1st Qu.: 0.000 \n", " Median :34.00 Median :6.000 Median :3.000 Median : 0.000 \n", " Mean :34.48 Mean :4.922 Mean :3.006 Mean : 8.769 \n", " 3rd Qu.:47.00 3rd Qu.:6.000 3rd Qu.:5.000 3rd Qu.:18.000 \n", " Max. :91.00 Max. :8.000 Max. :5.000 Max. :66.000 \n", " MaxDinks packsDay \n", " Min. :-9.00 Min. : -9.000 \n", " 1st Qu.: 3.00 1st Qu.: 0.000 \n", " Median :10.00 Median : 1.587 \n", " Mean :13.71 Mean : 11.674 \n", " 3rd Qu.:22.75 3rd Qu.: 18.000 \n", " Max. :96.00 Max. :193.000 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "summary(gaw)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAZZElEQVR4nO3d7ZraSLJF4RQIUXzq/u92gKLs6nG1+4HYUsbOXO8PG58zGoWC\nWlNGYLvMAMJK7QGAFhASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBAS\nIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBA\nSIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiA\nACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAh\nAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEC\nhAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQE\nCKwQUgHMvPFVrg+nwikAJUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAA\nAUICBAgJECAkQICQAAFCAgQICXm89Se2cyAkZPGoyDUlQkIW5duPdggJSZT/+9kLIf3zxLXV\nuvAECEnPc5ez8eAJEJKe5y5n48Ez4DWSnOkyjQfPgLt2cqbLNB48B+MXiYQECBASIEBIgAAh\nSdkOjiBCkrIdHEGEJGU7OIIIScp2cAQRkpTt4AgiJECAkAABQgIECEnKdnAEEZKU7eAIIiQp\n28ERREhStoMjiJCkbAdHECEBAoQECBASIEBIUraDI4iQpGwHRxAhSdkOjiBCkrIdHEGEJGU7\nOIIICRAgJECAkAABQpKyHRxBhCRlOziCCEnKdnAEEZKU7eAIIiQp28ERREiAACEBAoQECBCS\nlO3gCCIkKdvBEURIUraDI4iQpGwHRxAhSdkOjiBCAgQICRAgJECAkKRsB0cQIUnZDo4gQpKy\nHRxBhCRlOziCCEnKdnAEERIgQEiAACEBAoQkZTs4gghJynZwBBGSlO3gCFo1pNN+LHfjdFrq\nFJXZDo6gFUO6bspv20VOUZ3t4AhaMaSpDIfz49HlOJRpiVMAlawY0lDOvx6fy7DEKYBKVgyp\nlH/7hewUQCV8R5KyHRxB675GOl4ej9p9jWQ7OILWvP29/XbXbnNd5BS12Q6OoHXfR5oe7yMN\n4573kdAWPtkgZTs4gvKEVL5b5hTAUtYM6bIrw36ePzZl+OutBv6HHXbW/IjQcP9e87Fv+SNC\n6NWqt79v34emoeyu83Xi9jeasuobso+jy+PGN2/Ioimrf0ToeSOh0Y8I2Q6OoArfke4/XvmO\nhKZUeI00XZ+P9aeoznZwBHHXDhDgfSTkYfxWfJ5PNqx8CqTzqMg1JUKSsh08g/LtRzuEJGU7\neALl/372QkhStoMnQEh6nrucjQdPgJD0PHc5Gw+eAa+R5EyXiRDu2smZLhNBvI8kZrtO9IqQ\npGwHRxAhSdkOjiBCkrIdHEGEJGU7OIIIScp2cAQREiBASBAqtdW78lUOSXgKZOT7xBOSlO3g\nSfjuj5CkbAdPwnd/hCRlO3gSvvsjJCnbwRFESFK2gyOIkAABQkIivk88ISER3yeekKRsB0/C\nd3+EJGU7eBK++yMkKdvBk/DdHyFJ2Q6OIEKSsh0cQYQECBASEvF94gkJifg+8YQkZTt4Er77\nIyQp28GT8N0fIUnZDp6E7/4IScp2cAQRkpTt4AgiJECAkJCI7xNPSEjE94knJCnbwZPw3R8h\nSdkOnoTv/ghJynbwJHz3R0hStoMjiJCkbAdHECEBAoSERHyfeEJCIr5PPCFJ2Q6ehO/+CEnK\ndvAkfPdHSFK2gyfhuz9CkrIdHEGEJGU7OIIICRAgJCTi+8QTEhLxfeIJScp28CR890dIUraD\nJ+G7P0KSsh08Cd/9EZKU7eAIIiQp28ERREiAACEhEd8nnpCQiO8TT0hStoMn4bs/QpKyHTwJ\n3/0RkpTt4En47o+QpGwHRxAhSdkOjiBCAgQICYn4PvGEhER8n3hCkrIdPAnf/RGSlO3gSfju\nj5CkbAdPwnd/hCRlOziCCEnKdnAEERIgQEhIxPeJJyQk4vvEE5KU7eBJ+O6PkKRsB0/Cd3+E\nJGU7eBK++yMkKdvBEURIUraDI4iQAAFCQiK+TzwhIRHfJ56QpGwHT8J3f4QkZTt4Er77IyQp\n28GT8N0fIUnZDo4gQpKyHRxBhAQIEBIS8X3iCQmJ+D7xhCRlO3gSvvsjJCnbwZPw3R8hSdkO\nnoTv/ghJynZwBBGSlO3gCCIkQICQkIjvE09ISMT3iSckKdvBk/Dd36ohnfZjuRun01KnqMx2\n8CR897diSNdN+W27yCmqsx08Cd/9rRjSVIbD+fHochzKtMQpqrMdHEErhjSU86/H5zIscYrq\nbAdH0IohlfJvv5CdAqiE70hIxPeJX/c10vHyeNTuayTE+D7xa97+3n67a7e5LnKK2mwHT8J3\nf+u+jzQ93kcaxj3vI+Envvvjkw1StoMn4bu/PCGV75Y5xfJsB0fQmiFdp/utuv2mlO1hoVPU\nZjs4glYM6TLcvtNch6Y/IoRerRjSrozX2w+7y62pHbe/8QPfJ37VTzZcnz/cfpfHG7L4ge8T\nv/ZHhIby7RfyU1RnO3gSvvtb9bd253nef35O6Pr3F0m2+7QdPAnf/a0Y0rkM03keh1tJx005\nLnGK6mwHT8J3f2ve/j4Ov98o2i9zitpsB0fQum/IHnaPPyU77i+LnaIu28ERlOeTDSufAlAi\nJCTi+8QTEhLxfeIJScp28CR890dIUraDJ+G7P0KSsh08Cd/9EZKU7eAIIiQp28ERREiAACEh\nEd8nnpCQiO8TT0hStoMn4bs/QpKyHTwJ3/0RkpTt4En47o+QpGwHRxAhSdkOjiBCAgQICYn4\nPvGEhER8n3hCkrIdPAnf/RGSlO3gSfjuj5CkbAdPwnd/hCRlOziCCEnKdnAEERIgQEhIxPeJ\nJyQk4vvEE5KU7eBJ+O6PkKRsB0/Cd3+EJGU7eBK++yMkKdvBEURIUraDI4iQAAFCQiK+Tzwh\nIRHfJ56QpGwHT8J3f4QkZTt4Er77IyQp28GT8N0fIUnZDo4gQpKyHRxBhAQINBZS6Z3yWajA\nd/7WQlJOYcj9+n3nJ6SmuF+/7/yE1BT36/edn5Ca4n79vvMTUlN6v/56CKkpvV9/PYTUlN6v\nvx5Caor79fvOT0hNcb9+3/kJqSnu1+87PyE1xf36fecnpKa4X7/v/ITUlN6vvx5Cakrv118P\nITWl9+uvh5Ca4n79vvMTUlPcr993fkJqivv1+85PSE1xv37f+QmpKe7X7zt/MKT914PrKBjm\nx1Osc2Ajer/+eoIhle3nz3vt319DSG/q/frrCYY0PUo6DKXs/+0//g5CelPv119P9DXSraTT\nppTNWTXQn6dY5cBGuF+/7/zhmw3T/a8llH47+uMUaxzYCPfr950/ftduKoP229Gfp1jhwEa4\nX7/v/ILb39tykozyl1Msf2Aj3K/fd/5ASAv+rdOE9Cb36/edn5Ca0vv118MnG5rS+/XXQ0hN\n6f366wmHdBzvv6sbL6J5fjrFGgc2wv36feePhrT9fHlUBmlJhPQm9+v3nT8Y0kfZXu8hfZSd\nbKSZkN7mfv2+8wdDGsp1ftyw465dCu7X7zt/9NPfZSakRNyv33f+YEib53ekc9nIRpoJ6W29\nX389mtdIx6F8yEaaCeltvV9/PdG7duPzcw1b1UB/nmKVAxvR+/XXI3kfqYwH0Tg/nmKNAxvh\nfv2+8/PJhqa4X7/v/ITUFPfr950/9Onvf3wCvPJUwQMb4X79vvMTUlPcr993/ugbssNe+3HV\nP0+xzoGN6P366wmGtLvf+T5cZeP8cIp1DmxE79dfT/hmw+H++e/dUTTOj6dY48BG9H799Qju\n2l32m1KGSTLOv5xi+QMb4X79vvNLbn9fd9xsyMH9+n3nj4d0vn9DKlv+yuIM3K/fd/5gSMdp\nKGUziV8iEdK73K/fd/7wn0cqo/zvWSWkt7lfv+/80e9I91dHt+9I4hvghPSm3q+/nvhrpNP9\nd3e3mDTz/HiKFQ5sRO/XX4/krt2Ju3ZJ9H799QhCut5v2224a5dB9PpL79bc/A+fbJjE/x4F\nIb0pHJJkCl/VQnp81k5985uQ3kZIMdVC4tPfuRBSTLWQ5P/E2J+nWOfARhBSTMXXSIsgpDcR\nUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFmIR02n/+xazjf73vREhvIqQYi5Cum2/vIP/9rzgm\npDcRUoxFSFMZDp9/5OJyHMpfP+RKSG8ipBiLkIby+08uncuwxCn4Qqh8vDuLkP7xicC/fzyQ\nkN5ESDEWIfEdaXmEFGMR0u010vHzg3m8RloKIcVYhDRvv9212/z1D6cT0psIKcYjpPk0Pd5H\nGsY97yMtg5BiTEJa/hR8IdQ93l0LIUn+xC9fCHWPd2cW0n+GQkhvIqQYQooe2AhCirEI6YW/\nr4WQ3kRIMRYhnQZCWhohxViENF/Hsn28I8tv7ZZCSDEeIc3zoZTDTEjLIaQYl5Dmy7aMV0Ja\nDCHF2IQ0z/syHAlpKYQUYxTSfN789xuuhPQmQopxCunx9xwvdQq+EOoe784rpAVPwRdC3ePd\nEVL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwh\nRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFENLXgb2rtfhGENLXgb2rtfhG\nENLXgb2rtfhGEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHF\nEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwh\nRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0\nwEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sRDik3q25eULKi5CC1tw8IeVFSEFrbp6Q8uI1Ugwh\nRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0\nwEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9s\nBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQ\nUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHF\nEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhRQ9sBCHFEFL0wEYQUgwhfR3Yu1qLbwQhJWE7+JP7\n/FGElITt4E/u80cRUhK2gz+5zx9FSEnYDv7kPn8UIUGi98UTEiR6XzwhQaL3xRNSEraDP7nP\nH0VISdgO/uQ+fxQhJWE7+JP7/FGElITt4E/u80cRUhK2gz+5zx9FSJDoffGEBIneF09IkOh9\n8YSUhO3gT+7zRxFSEraDP7nPH0VISdgO/uQ+fxQhJWE7+JP7/FGElITt4E/u80cREiR6Xzwh\nQaL3xRMSJHpfPCElYTv4k/v8UYSUhO3gT+7zRxFSEraDP7nPH0VISdgO/uQ+f5RJSKf9+PgL\nqsfptNQpKrMd/Ml9/iiLkK6bb3/Z+3aRUyCo98VbhDSV4XB+PLochzItcQoE9b54i5CGcv71\n+FyGJU6BoN4XbxHSP/7xnr//Sz62z6ft4E/u80dZhNTDdyTbwZ/c54+yCOn2Gul4eTxq9zWS\n7eBP7vNHWYQ0b7/dtdtcFzlFbbaDP7nPH+UR0nyaHu8jDeOe95Fycp8/yiSkTKfAT3pffAsh\nKf9xbrxp6X90Pb33N7fKIZ+uu1K2x+d/SZu3v9GrNT8iNDyaHz//S9oMyXbwJHz3t+rt749b\nTR/D42N2hIQf+O5v1TdkHz9dhs2FkPAj3/1V+IjQdbslJPzId38rhrQpX2/CbraEhJ/47m/F\nkD7K7vnoUraNhoRerXn7e/pVz/E/7tgTEsys+obsefx6dNkRElqS55MNK59iGbaDJ+G7P0KS\nsh08Cd/9EZKU7eBJ+O6PkKRsB0/Cd3+EJGU7eBK++yMkQICQAAFCAgQIScp28CR890dIUraD\nJ+G7P0KSsh08Cd/9EZKU7eBJ+O6PkKRsB0/Cd3+EBAgQEiBASIAAIUnZDp6E7/4IScp28CR8\n90dIUraDJ+G7P0KSsh08Cd/9EZKU7eBJ+O6PkAABQgIECAkQICQp28GT8N0fIUnZDp6E7/4I\nScp28CR890dIUraDJ+G7P0KSsh08Cd/9ERIgQEiAACEBAoQkZTt4Er77IyQp28GT8N0fIUnZ\nDp6E7/4IScp28CR890dIUraDJ+G7P0ICBAgJECAkQICQpGwHT8J3f4QkZTt4Er77IyQp28GT\n8N0fIUnZDp6E7/4IScp28CR890dIgAAhAQKEBAgQkpTt4En47o+QpGwHT8J3f4QkZTt4Er77\nIyQp28GT8N0fIUnZDp6E7/4ICRAgJECAkAABQpKyHTwJ3/0RkpTt4En47o+QpGwHT8J3f4Qk\nZTt4Er77IyQp28GT8N0fIQEChAQIEBIgQEhStoMn4bs/QpKyHTwJ3/0RkpTt4En47o+QpGwH\nT8J3f4QkZTt4Er77IyRAgJAAAUICBAhJynbwJHz3R0hStoMn4bs/QpKyHTwJ3/0RkpTt4En4\n7o+QpGwHT8J3f4QECBASIEBIgAAhSdkOnoTv/ghJynbwJHz3R0hStoMn4bs/QpKyHTwJ3/0R\nkpTt4En47o+QAAFCAgQICRAgJCnbwZPw3R8hSdkOnoTv/ghJynbwJHz3R0hStoMn4bs/QpKy\nHTwJ3/0REiBASIAAIQEChCRlO3gSvvsjJCnbwZPw3R8hSdkOnoTv/ghJynbwJHz3R0hStoMn\n4bs/QgIECAkQICRAgJCkbAdPwnd/hCRlO3gSvvsjJCnbwZPw3R8hSdkOnoTv/ghJynbwJHz3\nR0iAACEBAoQECKwa0mk/lrtxOi11ispsB0/Cd38rhnTdlN+2i5yiOtvBk/Dd34ohTWU4nB+P\nLsehTEucojrbwZPw3d+KIQ3l/OvxuQxLnKI628GT8N3fiiGV8m+/eP5fvnnzFGGltloXLlJ7\nffX2x3ckQGDd10jHy+NRu6+R0Ks1b39vv30L3lwXOQVQx7rvI02P95GGcd/q+0joFZ9sAAQI\nCRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQ\nSBoSYOaNr3J9OM1gNzFd7a+ri30Ru4npan9dXeyL2E1MV/vr6mJfxG5iutpfVxf7InYT09X+\nurrYF7GbmK7219XFvojdxHS1v64u9kXsJqar/XV1sS9iNzFd7a+ri30Ru4npan9dXeyL2E1M\nV/vr6mJfxG5iutpfVxcLLIWQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAk\nQICQAAFCAgQICRAgpJ8F/jp1DOPH5fHg8jEOlWdZC18oPyOkgNvado8Hu34W2Mt1vqqbL4Al\nlLL5/EY0bLrZYy/X+apuvgCWUMpUzrefz7efe9ljL9f5qm6+AJZQyrF83H7+KIdu9tjLdb6q\nmy+AJZRyLePt57FcutljL9f5Ku41BNzWtrlvrgz9/A9SL9f5KkIKuK1tKqf5VHaE1LtuvgCW\ncFveoeznfTn0s8dervNV3XwBLOG2vEvZztty6WePvVznq7r5AljCfXlDud5eIvWzx16u81Xd\nfAEs4b68XZnuH2/oZo+9XOeruvkCWMJ9eYdSbi+R+tljL9f5qm6+AJZwX97lFtKloz32cp2v\n6uYLYAmP5Q33l0j97LGX6wQWRUiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQI\nEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBAS\nIEBIgAAhAQKEBAgQEiBASI7+/HfwLvd/+Rj1EJKjP0PaDzXmwC+E5OjPkDanGnPgF0Jy1M0/\nceyDZ8TGrZ6pDNPnw8vtx49NGT4+/3/TULaXirOBkGyUsi8328fD20uisXz9ct7eHw3XygN2\njZBs3FI5z+ehHD5DOpbtdb5uy3GeD/eHuzLVnrBnhGSj3Ju59TPOl/tv7cZy/w50vf3y9vB0\nf8SNu4oIycbzDsPtp+H+sHzh3kMGPAU2CCkzngIbv0O6/F89hFQfT4GNcn8ldHuNtPssZ3y8\nZHrY8hqpOkKy8XXX7vgZ0uH+y/njfrPh437XbuKuXU2EZKOUx9tF4/z8vdzjV2W4zLyPlAAh\n2bjVM5bNx/Ph/PhkQ9l9fp5hugXGJxtqIiQb3FLIjCfHBiFlxpNjg5Ay48mxQUiZ8eQAAoQE\nCBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQ\nEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIPA/zTqwcGqsq9oAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "boxplot(gaw$age ~ gaw$sex, xlab = \"płeć\", ylab = \"wiek\")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "\n", " F M \n", "158 379 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#gaw$sex #wyciąganie kolumny sex\n", "table(gaw[gaw$age > 30 & gaw$MaxDinks > 10,5])" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
sex
F
M
F
M
F
F
M
M
M
M
M
M
F
M
M
M
M
F
F
M
M
M
F
M
M
M
M
M
M
F
...
M
M
F
M
M
M
M
M
M
M
M
F
M
F
M
M
F
F
M
M
F
F
M
M
M
F
M
M
M
M
\n" ], "text/latex": [ "\\begin{tabular}{r|l}\n", " sex\\\\\n", "\\hline\n", "\t F\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t F\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t F\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t ...\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t F\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t F\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t F\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\t M\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| sex |\n", "|---|\n", "| F |\n", "| M |\n", "| F |\n", "| M |\n", "| F |\n", "| F |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| F |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| F |\n", "| F |\n", "| M |\n", "| M |\n", "| M |\n", "| F |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| F |\n", "| ... |\n", "| M |\n", "| M |\n", "| F |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "| F |\n", "| M |\n", "| F |\n", "| M |\n", "| M |\n", "| F |\n", "| F |\n", "| M |\n", "| M |\n", "| F |\n", "| F |\n", "| M |\n", "| M |\n", "| M |\n", "| F |\n", "| M |\n", "| M |\n", "| M |\n", "| M |\n", "\n" ], "text/plain": [ " sex\n", "1 F \n", "2 M \n", "3 F \n", "4 M \n", "5 F \n", "6 F \n", "7 M \n", "8 M \n", "9 M \n", "10 M \n", "11 M \n", "12 M \n", "13 F \n", "14 M \n", "15 M \n", "16 M \n", "17 M \n", "18 F \n", "19 F \n", "20 M \n", "21 M \n", "22 M \n", "23 F \n", "24 M \n", "25 M \n", "26 M \n", "27 M \n", "28 M \n", "29 M \n", "30 F \n", "... ...\n", "508 M \n", "509 M \n", "510 F \n", "511 M \n", "512 M \n", "513 M \n", "514 M \n", "515 M \n", "516 M \n", "517 M \n", "518 M \n", "519 F \n", "520 M \n", "521 F \n", "522 M \n", "523 M \n", "524 F \n", "525 F \n", "526 M \n", "527 M \n", "528 F \n", "529 F \n", "530 M \n", "531 M \n", "532 M \n", "533 F \n", "534 M \n", "535 M \n", "536 M \n", "537 M " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gaw2[age > 30 & MaxDinks > 10, \"sex\"]" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
sexethnicityavgAge
F 6 56.00
M 6 50.00
M 1 36.00
F 4 45.00
M 4 41.00
F 1 57.50
F 5 49.50
F 8 56.25
F 3 53.50
M 8 31.75
F 7 49.00
M 7 51.50
M 5 29.00
M 3 56.25
\n" ], "text/latex": [ "\\begin{tabular}{r|lll}\n", " sex & ethnicity & avgAge\\\\\n", "\\hline\n", "\t F & 6 & 56.00\\\\\n", "\t M & 6 & 50.00\\\\\n", "\t M & 1 & 36.00\\\\\n", "\t F & 4 & 45.00\\\\\n", "\t M & 4 & 41.00\\\\\n", "\t F & 1 & 57.50\\\\\n", "\t F & 5 & 49.50\\\\\n", "\t F & 8 & 56.25\\\\\n", "\t F & 3 & 53.50\\\\\n", "\t M & 8 & 31.75\\\\\n", "\t F & 7 & 49.00\\\\\n", "\t M & 7 & 51.50\\\\\n", "\t M & 5 & 29.00\\\\\n", "\t M & 3 & 56.25\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| sex | ethnicity | avgAge |\n", "|---|---|---|\n", "| F | 6 | 56.00 |\n", "| M | 6 | 50.00 |\n", "| M | 1 | 36.00 |\n", "| F | 4 | 45.00 |\n", "| M | 4 | 41.00 |\n", "| F | 1 | 57.50 |\n", "| F | 5 | 49.50 |\n", "| F | 8 | 56.25 |\n", "| F | 3 | 53.50 |\n", "| M | 8 | 31.75 |\n", "| F | 7 | 49.00 |\n", "| M | 7 | 51.50 |\n", "| M | 5 | 29.00 |\n", "| M | 3 | 56.25 |\n", "\n" ], "text/plain": [ " sex ethnicity avgAge\n", "1 F 6 56.00 \n", "2 M 6 50.00 \n", "3 M 1 36.00 \n", "4 F 4 45.00 \n", "5 M 4 41.00 \n", "6 F 1 57.50 \n", "7 F 5 49.50 \n", "8 F 8 56.25 \n", "9 F 3 53.50 \n", "10 M 8 31.75 \n", "11 F 7 49.00 \n", "12 M 7 51.50 \n", "13 M 5 29.00 \n", "14 M 3 56.25 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#mean(gaw2[, \"age\"])\n", "gaw2[ethnicity != 0 & age != 0, .(avgAge = quantile(age, 0.75)),by = .(sex, ethnicity)]" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
IDMothersexMaxDinks
110000031F 24
210000031F 12
3 0M -9
410000758M 18
510000031M 40
610000031F 20
7 0M 24
8 0F 7
910001364F 75
1010001364M 48
1110001364F 36
1210001364M 12
13 0M 10
14 0F 5
1510001511F 48
1610001511M 10
1710001511F 3
1810001511M 71
19 0M 10
20 0F 14
2110000650M 26
2210000650M 36
2310000650M 15
2410000650F 10
25 0M 24
26 0F 3
27 0M 42
28 0F 3
2910000382F 5
30 0M 20
3110000861F 8
3210000382M 20
3310000382F 6
3410000382F 15
35 0M -9
3610000861M 31
3710000815M 50
38 0M 6
3910000815M 15
4010000815M 64
41 0F 8
4210001081M 36
43 0F 2
4410001268F 5
4510001268F 4
4610001081M 15
47 0F 4
4810000905F 10
4910001081F 1
5010001081M 12
7610000532F 6
\n" ], "text/latex": [ "\\begin{tabular}{r|lll}\n", " & IDMother & sex & MaxDinks\\\\\n", "\\hline\n", "\t1 & 10000031 & F & 24 \\\\\n", "\t2 & 10000031 & F & 12 \\\\\n", "\t3 & 0 & M & -9 \\\\\n", "\t4 & 10000758 & M & 18 \\\\\n", "\t5 & 10000031 & M & 40 \\\\\n", "\t6 & 10000031 & F & 20 \\\\\n", "\t7 & 0 & M & 24 \\\\\n", "\t8 & 0 & F & 7 \\\\\n", "\t9 & 10001364 & F & 75 \\\\\n", "\t10 & 10001364 & M & 48 \\\\\n", "\t11 & 10001364 & F & 36 \\\\\n", "\t12 & 10001364 & M & 12 \\\\\n", "\t13 & 0 & M & 10 \\\\\n", "\t14 & 0 & F & 5 \\\\\n", "\t15 & 10001511 & F & 48 \\\\\n", "\t16 & 10001511 & M & 10 \\\\\n", "\t17 & 10001511 & F & 3 \\\\\n", "\t18 & 10001511 & M & 71 \\\\\n", "\t19 & 0 & M & 10 \\\\\n", "\t20 & 0 & F & 14 \\\\\n", "\t21 & 10000650 & M & 26 \\\\\n", "\t22 & 10000650 & M & 36 \\\\\n", "\t23 & 10000650 & M & 15 \\\\\n", "\t24 & 10000650 & F & 10 \\\\\n", "\t25 & 0 & M & 24 \\\\\n", "\t26 & 0 & F & 3 \\\\\n", "\t27 & 0 & M & 42 \\\\\n", "\t28 & 0 & F & 3 \\\\\n", "\t29 & 10000382 & F & 5 \\\\\n", "\t30 & 0 & M & 20 \\\\\n", "\t31 & 10000861 & F & 8 \\\\\n", "\t32 & 10000382 & M & 20 \\\\\n", "\t33 & 10000382 & F & 6 \\\\\n", "\t34 & 10000382 & F & 15 \\\\\n", "\t35 & 0 & M & -9 \\\\\n", "\t36 & 10000861 & M & 31 \\\\\n", "\t37 & 10000815 & M & 50 \\\\\n", "\t38 & 0 & M & 6 \\\\\n", "\t39 & 10000815 & M & 15 \\\\\n", "\t40 & 10000815 & M & 64 \\\\\n", "\t41 & 0 & F & 8 \\\\\n", "\t42 & 10001081 & M & 36 \\\\\n", "\t43 & 0 & F & 2 \\\\\n", "\t44 & 10001268 & F & 5 \\\\\n", "\t45 & 10001268 & F & 4 \\\\\n", "\t46 & 10001081 & M & 15 \\\\\n", "\t47 & 0 & F & 4 \\\\\n", "\t48 & 10000905 & F & 10 \\\\\n", "\t49 & 10001081 & F & 1 \\\\\n", "\t50 & 10001081 & M & 12 \\\\\n", "\t76 & 10000532 & F & 6 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| | IDMother | sex | MaxDinks |\n", "|---|---|---|---|\n", "| 1 | 10000031 | F | 24 |\n", "| 2 | 10000031 | F | 12 |\n", "| 3 | 0 | M | -9 |\n", "| 4 | 10000758 | M | 18 |\n", "| 5 | 10000031 | M | 40 |\n", "| 6 | 10000031 | F | 20 |\n", "| 7 | 0 | M | 24 |\n", "| 8 | 0 | F | 7 |\n", "| 9 | 10001364 | F | 75 |\n", "| 10 | 10001364 | M | 48 |\n", "| 11 | 10001364 | F | 36 |\n", "| 12 | 10001364 | M | 12 |\n", "| 13 | 0 | M | 10 |\n", "| 14 | 0 | F | 5 |\n", "| 15 | 10001511 | F | 48 |\n", "| 16 | 10001511 | M | 10 |\n", "| 17 | 10001511 | F | 3 |\n", "| 18 | 10001511 | M | 71 |\n", "| 19 | 0 | M | 10 |\n", "| 20 | 0 | F | 14 |\n", "| 21 | 10000650 | M | 26 |\n", "| 22 | 10000650 | M | 36 |\n", "| 23 | 10000650 | M | 15 |\n", "| 24 | 10000650 | F | 10 |\n", "| 25 | 0 | M | 24 |\n", "| 26 | 0 | F | 3 |\n", "| 27 | 0 | M | 42 |\n", "| 28 | 0 | F | 3 |\n", "| 29 | 10000382 | F | 5 |\n", "| 30 | 0 | M | 20 |\n", "| 31 | 10000861 | F | 8 |\n", "| 32 | 10000382 | M | 20 |\n", "| 33 | 10000382 | F | 6 |\n", "| 34 | 10000382 | F | 15 |\n", "| 35 | 0 | M | -9 |\n", "| 36 | 10000861 | M | 31 |\n", "| 37 | 10000815 | M | 50 |\n", "| 38 | 0 | M | 6 |\n", "| 39 | 10000815 | M | 15 |\n", "| 40 | 10000815 | M | 64 |\n", "| 41 | 0 | F | 8 |\n", "| 42 | 10001081 | M | 36 |\n", "| 43 | 0 | F | 2 |\n", "| 44 | 10001268 | F | 5 |\n", "| 45 | 10001268 | F | 4 |\n", "| 46 | 10001081 | M | 15 |\n", "| 47 | 0 | F | 4 |\n", "| 48 | 10000905 | F | 10 |\n", "| 49 | 10001081 | F | 1 |\n", "| 50 | 10001081 | M | 12 |\n", "| 76 | 10000532 | F | 6 |\n", "\n" ], "text/plain": [ " IDMother sex MaxDinks\n", "1 10000031 F 24 \n", "2 10000031 F 12 \n", "3 0 M -9 \n", "4 10000758 M 18 \n", "5 10000031 M 40 \n", "6 10000031 F 20 \n", "7 0 M 24 \n", "8 0 F 7 \n", "9 10001364 F 75 \n", "10 10001364 M 48 \n", "11 10001364 F 36 \n", "12 10001364 M 12 \n", "13 0 M 10 \n", "14 0 F 5 \n", "15 10001511 F 48 \n", "16 10001511 M 10 \n", "17 10001511 F 3 \n", "18 10001511 M 71 \n", "19 0 M 10 \n", "20 0 F 14 \n", "21 10000650 M 26 \n", "22 10000650 M 36 \n", "23 10000650 M 15 \n", "24 10000650 F 10 \n", "25 0 M 24 \n", "26 0 F 3 \n", "27 0 M 42 \n", "28 0 F 3 \n", "29 10000382 F 5 \n", "30 0 M 20 \n", "31 10000861 F 8 \n", "32 10000382 M 20 \n", "33 10000382 F 6 \n", "34 10000382 F 15 \n", "35 0 M -9 \n", "36 10000861 M 31 \n", "37 10000815 M 50 \n", "38 0 M 6 \n", "39 10000815 M 15 \n", "40 10000815 M 64 \n", "41 0 F 8 \n", "42 10001081 M 36 \n", "43 0 F 2 \n", "44 10001268 F 5 \n", "45 10001268 F 4 \n", "46 10001081 M 15 \n", "47 0 F 4 \n", "48 10000905 F 10 \n", "49 10001081 F 1 \n", "50 10001081 M 12 \n", "76 10000532 F 6 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gaw[c(1:50,76),c(4, 5, 10)] #wyciąganie wierszy od 1 do 50 i 76 z kolumn 4, 5 i 10" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
familyIDindividualIDIDFatherIDMotheragealcoholDependenceAgeOnsetMaxDinkspacksDay
10084 10000089100005261000003130 5 16 24 17.000
10084 10000758100005261000003131 5 30 12 16.000
10084 10001094 0 0 0 0 0 -9 -9.000
10084 10000133100010941000075818 3 0 18 0.450
10084 10001039100005261000003128 5 16 40 0.000
10084 10000194100005261000003124 3 0 20 8.000
10084 10000526 0 060 5 38 24 42.000
10084 10000031 0 060 3 0 7 58.500
10130 10001565100014361000136438 5 18 75 30.000
10130 10000919100014361000136440 5 33 48 0.000
10130 10000299100014361000136432 5 17 36 32.000
10130 10000489100014361000136427 3 0 12 0.000
10130 10001436 0 062 3 0 10 42.000
10130 10001364 0 061 1 0 5 0.125
10038 10000572100012501000151128 5 15 48 12.000
10038 10000272100012501000151126 3 0 10 0.000
10038 10001295100012501000151125 1 0 3 0.000
10038 10000598100012501000151122 5 15 71 12.000
10038 10001250 0 068 3 0 10 0.000
10038 10001511 0 052 3 0 14 31.000
10006 10000264100001301000065034 5 16 26 0.000
10006 10000025100001301000065035 5 18 36 13.000
10006 10000707100001301000065026 5 20 15 6.000
10006 10001405100001301000065028 5 23 10 0.000
10006 10000130 0 058 5 30 24 -9.000
10006 10000650 0 059 1 0 3 0.000
10027 10000398 0 058 5 24 42 41.000
10027 10000382 0 065 1 0 3 0.000
10027 10000861100003981000038238 3 0 5 14.000
10027 10000915 0 044 5 0 20 23.000
...........................
10026 10001144 0 049 3 0 24 51.00
10026 10000769 0 053 1 0 6 35.00
10005 10001357100000161000006640 5 39 13 0.00
10005 10000425 0 041 3 0 6 0.00
10005 10001547100004251000135723 5 20 24 4.50
10005 10000350100004251000135721 5 19 36 6.00
10005 10000747100004251000135718 1 0 8 0.15
10005 10000267100000161000006629 1 0 6 0.00
10005 10000049100000161000006637 5 25 30 10.00
10005 10000393100000161000006639 3 0 8 19.00
10005 10000016 0 062 5 23 52 0.00
10005 10000066 0 058 1 0 6 0.00
10138 10000376100008201000051629 5 18 32 10.00
10138 10000556100008201000051627 3 0 4 4.50
10138 10001313100008201000051640 5 25 32 13.00
10138 10000322100008201000051639 5 22 24 14.00
10138 10000255100008201000051641 1 0 6 0.00
10138 10001416100008201000051635 5 21 25 3.00
10138 10000961100008201000051638 1 0 5 0.00
10138 10000820 0 070 5 20 14 39.50
10138 10000516 0 059 1 0 2 0.00
10138 10000759100008201000051634 1 0 1 0.00
10086 10000663100000351000053735 5 18 48 15.00
10086 10000005100000351000053730 5 16 25 0.00
10086 10000337100000351000053734 3 0 10 2.30
10086 10000035100003141000048358 5 21 24 0.60
10086 10000537 0 057 1 0 6 0.00
10086 10000153100003141000048357 5 25 24 128.00
10086 10000314 0 0 0 0 0 -9 -9.00
10086 10000483 0 0 0 0 0 -9 -9.00
\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllll}\n", " familyID & individualID & IDFather & IDMother & age & alcoholDependence & AgeOnset & MaxDinks & packsDay\\\\\n", "\\hline\n", "\t 10084 & 10000089 & 10000526 & 10000031 & 30 & 5 & 16 & 24 & 17.000 \\\\\n", "\t 10084 & 10000758 & 10000526 & 10000031 & 31 & 5 & 30 & 12 & 16.000 \\\\\n", "\t 10084 & 10001094 & 0 & 0 & 0 & 0 & 0 & -9 & -9.000 \\\\\n", "\t 10084 & 10000133 & 10001094 & 10000758 & 18 & 3 & 0 & 18 & 0.450 \\\\\n", "\t 10084 & 10001039 & 10000526 & 10000031 & 28 & 5 & 16 & 40 & 0.000 \\\\\n", "\t 10084 & 10000194 & 10000526 & 10000031 & 24 & 3 & 0 & 20 & 8.000 \\\\\n", "\t 10084 & 10000526 & 0 & 0 & 60 & 5 & 38 & 24 & 42.000 \\\\\n", "\t 10084 & 10000031 & 0 & 0 & 60 & 3 & 0 & 7 & 58.500 \\\\\n", "\t 10130 & 10001565 & 10001436 & 10001364 & 38 & 5 & 18 & 75 & 30.000 \\\\\n", "\t 10130 & 10000919 & 10001436 & 10001364 & 40 & 5 & 33 & 48 & 0.000 \\\\\n", "\t 10130 & 10000299 & 10001436 & 10001364 & 32 & 5 & 17 & 36 & 32.000 \\\\\n", "\t 10130 & 10000489 & 10001436 & 10001364 & 27 & 3 & 0 & 12 & 0.000 \\\\\n", "\t 10130 & 10001436 & 0 & 0 & 62 & 3 & 0 & 10 & 42.000 \\\\\n", "\t 10130 & 10001364 & 0 & 0 & 61 & 1 & 0 & 5 & 0.125 \\\\\n", "\t 10038 & 10000572 & 10001250 & 10001511 & 28 & 5 & 15 & 48 & 12.000 \\\\\n", "\t 10038 & 10000272 & 10001250 & 10001511 & 26 & 3 & 0 & 10 & 0.000 \\\\\n", "\t 10038 & 10001295 & 10001250 & 10001511 & 25 & 1 & 0 & 3 & 0.000 \\\\\n", "\t 10038 & 10000598 & 10001250 & 10001511 & 22 & 5 & 15 & 71 & 12.000 \\\\\n", "\t 10038 & 10001250 & 0 & 0 & 68 & 3 & 0 & 10 & 0.000 \\\\\n", "\t 10038 & 10001511 & 0 & 0 & 52 & 3 & 0 & 14 & 31.000 \\\\\n", "\t 10006 & 10000264 & 10000130 & 10000650 & 34 & 5 & 16 & 26 & 0.000 \\\\\n", "\t 10006 & 10000025 & 10000130 & 10000650 & 35 & 5 & 18 & 36 & 13.000 \\\\\n", "\t 10006 & 10000707 & 10000130 & 10000650 & 26 & 5 & 20 & 15 & 6.000 \\\\\n", "\t 10006 & 10001405 & 10000130 & 10000650 & 28 & 5 & 23 & 10 & 0.000 \\\\\n", "\t 10006 & 10000130 & 0 & 0 & 58 & 5 & 30 & 24 & -9.000 \\\\\n", "\t 10006 & 10000650 & 0 & 0 & 59 & 1 & 0 & 3 & 0.000 \\\\\n", "\t 10027 & 10000398 & 0 & 0 & 58 & 5 & 24 & 42 & 41.000 \\\\\n", "\t 10027 & 10000382 & 0 & 0 & 65 & 1 & 0 & 3 & 0.000 \\\\\n", "\t 10027 & 10000861 & 10000398 & 10000382 & 38 & 3 & 0 & 5 & 14.000 \\\\\n", "\t 10027 & 10000915 & 0 & 0 & 44 & 5 & 0 & 20 & 23.000 \\\\\n", "\t ... & ... & ... & ... & ... & ... & ... & ... & ...\\\\\n", "\t 10026 & 10001144 & 0 & 0 & 49 & 3 & 0 & 24 & 51.00 \\\\\n", "\t 10026 & 10000769 & 0 & 0 & 53 & 1 & 0 & 6 & 35.00 \\\\\n", "\t 10005 & 10001357 & 10000016 & 10000066 & 40 & 5 & 39 & 13 & 0.00 \\\\\n", "\t 10005 & 10000425 & 0 & 0 & 41 & 3 & 0 & 6 & 0.00 \\\\\n", "\t 10005 & 10001547 & 10000425 & 10001357 & 23 & 5 & 20 & 24 & 4.50 \\\\\n", "\t 10005 & 10000350 & 10000425 & 10001357 & 21 & 5 & 19 & 36 & 6.00 \\\\\n", "\t 10005 & 10000747 & 10000425 & 10001357 & 18 & 1 & 0 & 8 & 0.15 \\\\\n", "\t 10005 & 10000267 & 10000016 & 10000066 & 29 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10005 & 10000049 & 10000016 & 10000066 & 37 & 5 & 25 & 30 & 10.00 \\\\\n", "\t 10005 & 10000393 & 10000016 & 10000066 & 39 & 3 & 0 & 8 & 19.00 \\\\\n", "\t 10005 & 10000016 & 0 & 0 & 62 & 5 & 23 & 52 & 0.00 \\\\\n", "\t 10005 & 10000066 & 0 & 0 & 58 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10138 & 10000376 & 10000820 & 10000516 & 29 & 5 & 18 & 32 & 10.00 \\\\\n", "\t 10138 & 10000556 & 10000820 & 10000516 & 27 & 3 & 0 & 4 & 4.50 \\\\\n", "\t 10138 & 10001313 & 10000820 & 10000516 & 40 & 5 & 25 & 32 & 13.00 \\\\\n", "\t 10138 & 10000322 & 10000820 & 10000516 & 39 & 5 & 22 & 24 & 14.00 \\\\\n", "\t 10138 & 10000255 & 10000820 & 10000516 & 41 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10138 & 10001416 & 10000820 & 10000516 & 35 & 5 & 21 & 25 & 3.00 \\\\\n", "\t 10138 & 10000961 & 10000820 & 10000516 & 38 & 1 & 0 & 5 & 0.00 \\\\\n", "\t 10138 & 10000820 & 0 & 0 & 70 & 5 & 20 & 14 & 39.50 \\\\\n", "\t 10138 & 10000516 & 0 & 0 & 59 & 1 & 0 & 2 & 0.00 \\\\\n", "\t 10138 & 10000759 & 10000820 & 10000516 & 34 & 1 & 0 & 1 & 0.00 \\\\\n", "\t 10086 & 10000663 & 10000035 & 10000537 & 35 & 5 & 18 & 48 & 15.00 \\\\\n", "\t 10086 & 10000005 & 10000035 & 10000537 & 30 & 5 & 16 & 25 & 0.00 \\\\\n", "\t 10086 & 10000337 & 10000035 & 10000537 & 34 & 3 & 0 & 10 & 2.30 \\\\\n", "\t 10086 & 10000035 & 10000314 & 10000483 & 58 & 5 & 21 & 24 & 0.60 \\\\\n", "\t 10086 & 10000537 & 0 & 0 & 57 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10086 & 10000153 & 10000314 & 10000483 & 57 & 5 & 25 & 24 & 128.00 \\\\\n", "\t 10086 & 10000314 & 0 & 0 & 0 & 0 & 0 & -9 & -9.00 \\\\\n", "\t 10086 & 10000483 & 0 & 0 & 0 & 0 & 0 & -9 & -9.00 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| familyID | individualID | IDFather | IDMother | age | alcoholDependence | AgeOnset | MaxDinks | packsDay |\n", "|---|---|---|---|---|---|---|---|---|\n", "| 10084 | 10000089 | 10000526 | 10000031 | 30 | 5 | 16 | 24 | 17.000 |\n", "| 10084 | 10000758 | 10000526 | 10000031 | 31 | 5 | 30 | 12 | 16.000 |\n", "| 10084 | 10001094 | 0 | 0 | 0 | 0 | 0 | -9 | -9.000 |\n", "| 10084 | 10000133 | 10001094 | 10000758 | 18 | 3 | 0 | 18 | 0.450 |\n", "| 10084 | 10001039 | 10000526 | 10000031 | 28 | 5 | 16 | 40 | 0.000 |\n", "| 10084 | 10000194 | 10000526 | 10000031 | 24 | 3 | 0 | 20 | 8.000 |\n", "| 10084 | 10000526 | 0 | 0 | 60 | 5 | 38 | 24 | 42.000 |\n", "| 10084 | 10000031 | 0 | 0 | 60 | 3 | 0 | 7 | 58.500 |\n", "| 10130 | 10001565 | 10001436 | 10001364 | 38 | 5 | 18 | 75 | 30.000 |\n", "| 10130 | 10000919 | 10001436 | 10001364 | 40 | 5 | 33 | 48 | 0.000 |\n", "| 10130 | 10000299 | 10001436 | 10001364 | 32 | 5 | 17 | 36 | 32.000 |\n", "| 10130 | 10000489 | 10001436 | 10001364 | 27 | 3 | 0 | 12 | 0.000 |\n", "| 10130 | 10001436 | 0 | 0 | 62 | 3 | 0 | 10 | 42.000 |\n", "| 10130 | 10001364 | 0 | 0 | 61 | 1 | 0 | 5 | 0.125 |\n", "| 10038 | 10000572 | 10001250 | 10001511 | 28 | 5 | 15 | 48 | 12.000 |\n", "| 10038 | 10000272 | 10001250 | 10001511 | 26 | 3 | 0 | 10 | 0.000 |\n", "| 10038 | 10001295 | 10001250 | 10001511 | 25 | 1 | 0 | 3 | 0.000 |\n", "| 10038 | 10000598 | 10001250 | 10001511 | 22 | 5 | 15 | 71 | 12.000 |\n", "| 10038 | 10001250 | 0 | 0 | 68 | 3 | 0 | 10 | 0.000 |\n", "| 10038 | 10001511 | 0 | 0 | 52 | 3 | 0 | 14 | 31.000 |\n", "| 10006 | 10000264 | 10000130 | 10000650 | 34 | 5 | 16 | 26 | 0.000 |\n", "| 10006 | 10000025 | 10000130 | 10000650 | 35 | 5 | 18 | 36 | 13.000 |\n", "| 10006 | 10000707 | 10000130 | 10000650 | 26 | 5 | 20 | 15 | 6.000 |\n", "| 10006 | 10001405 | 10000130 | 10000650 | 28 | 5 | 23 | 10 | 0.000 |\n", "| 10006 | 10000130 | 0 | 0 | 58 | 5 | 30 | 24 | -9.000 |\n", "| 10006 | 10000650 | 0 | 0 | 59 | 1 | 0 | 3 | 0.000 |\n", "| 10027 | 10000398 | 0 | 0 | 58 | 5 | 24 | 42 | 41.000 |\n", "| 10027 | 10000382 | 0 | 0 | 65 | 1 | 0 | 3 | 0.000 |\n", "| 10027 | 10000861 | 10000398 | 10000382 | 38 | 3 | 0 | 5 | 14.000 |\n", "| 10027 | 10000915 | 0 | 0 | 44 | 5 | 0 | 20 | 23.000 |\n", "| ... | ... | ... | ... | ... | ... | ... | ... | ... |\n", "| 10026 | 10001144 | 0 | 0 | 49 | 3 | 0 | 24 | 51.00 |\n", "| 10026 | 10000769 | 0 | 0 | 53 | 1 | 0 | 6 | 35.00 |\n", "| 10005 | 10001357 | 10000016 | 10000066 | 40 | 5 | 39 | 13 | 0.00 |\n", "| 10005 | 10000425 | 0 | 0 | 41 | 3 | 0 | 6 | 0.00 |\n", "| 10005 | 10001547 | 10000425 | 10001357 | 23 | 5 | 20 | 24 | 4.50 |\n", "| 10005 | 10000350 | 10000425 | 10001357 | 21 | 5 | 19 | 36 | 6.00 |\n", "| 10005 | 10000747 | 10000425 | 10001357 | 18 | 1 | 0 | 8 | 0.15 |\n", "| 10005 | 10000267 | 10000016 | 10000066 | 29 | 1 | 0 | 6 | 0.00 |\n", "| 10005 | 10000049 | 10000016 | 10000066 | 37 | 5 | 25 | 30 | 10.00 |\n", "| 10005 | 10000393 | 10000016 | 10000066 | 39 | 3 | 0 | 8 | 19.00 |\n", "| 10005 | 10000016 | 0 | 0 | 62 | 5 | 23 | 52 | 0.00 |\n", "| 10005 | 10000066 | 0 | 0 | 58 | 1 | 0 | 6 | 0.00 |\n", "| 10138 | 10000376 | 10000820 | 10000516 | 29 | 5 | 18 | 32 | 10.00 |\n", "| 10138 | 10000556 | 10000820 | 10000516 | 27 | 3 | 0 | 4 | 4.50 |\n", "| 10138 | 10001313 | 10000820 | 10000516 | 40 | 5 | 25 | 32 | 13.00 |\n", "| 10138 | 10000322 | 10000820 | 10000516 | 39 | 5 | 22 | 24 | 14.00 |\n", "| 10138 | 10000255 | 10000820 | 10000516 | 41 | 1 | 0 | 6 | 0.00 |\n", "| 10138 | 10001416 | 10000820 | 10000516 | 35 | 5 | 21 | 25 | 3.00 |\n", "| 10138 | 10000961 | 10000820 | 10000516 | 38 | 1 | 0 | 5 | 0.00 |\n", "| 10138 | 10000820 | 0 | 0 | 70 | 5 | 20 | 14 | 39.50 |\n", "| 10138 | 10000516 | 0 | 0 | 59 | 1 | 0 | 2 | 0.00 |\n", "| 10138 | 10000759 | 10000820 | 10000516 | 34 | 1 | 0 | 1 | 0.00 |\n", "| 10086 | 10000663 | 10000035 | 10000537 | 35 | 5 | 18 | 48 | 15.00 |\n", "| 10086 | 10000005 | 10000035 | 10000537 | 30 | 5 | 16 | 25 | 0.00 |\n", "| 10086 | 10000337 | 10000035 | 10000537 | 34 | 3 | 0 | 10 | 2.30 |\n", "| 10086 | 10000035 | 10000314 | 10000483 | 58 | 5 | 21 | 24 | 0.60 |\n", "| 10086 | 10000537 | 0 | 0 | 57 | 1 | 0 | 6 | 0.00 |\n", "| 10086 | 10000153 | 10000314 | 10000483 | 57 | 5 | 25 | 24 | 128.00 |\n", "| 10086 | 10000314 | 0 | 0 | 0 | 0 | 0 | -9 | -9.00 |\n", "| 10086 | 10000483 | 0 | 0 | 0 | 0 | 0 | -9 | -9.00 |\n", "\n" ], "text/plain": [ " familyID individualID IDFather IDMother age alcoholDependence AgeOnset\n", "1 10084 10000089 10000526 10000031 30 5 16 \n", "2 10084 10000758 10000526 10000031 31 5 30 \n", "3 10084 10001094 0 0 0 0 0 \n", "4 10084 10000133 10001094 10000758 18 3 0 \n", "5 10084 10001039 10000526 10000031 28 5 16 \n", "6 10084 10000194 10000526 10000031 24 3 0 \n", "7 10084 10000526 0 0 60 5 38 \n", "8 10084 10000031 0 0 60 3 0 \n", "9 10130 10001565 10001436 10001364 38 5 18 \n", "10 10130 10000919 10001436 10001364 40 5 33 \n", "11 10130 10000299 10001436 10001364 32 5 17 \n", "12 10130 10000489 10001436 10001364 27 3 0 \n", "13 10130 10001436 0 0 62 3 0 \n", "14 10130 10001364 0 0 61 1 0 \n", "15 10038 10000572 10001250 10001511 28 5 15 \n", "16 10038 10000272 10001250 10001511 26 3 0 \n", "17 10038 10001295 10001250 10001511 25 1 0 \n", "18 10038 10000598 10001250 10001511 22 5 15 \n", "19 10038 10001250 0 0 68 3 0 \n", "20 10038 10001511 0 0 52 3 0 \n", "21 10006 10000264 10000130 10000650 34 5 16 \n", "22 10006 10000025 10000130 10000650 35 5 18 \n", "23 10006 10000707 10000130 10000650 26 5 20 \n", "24 10006 10001405 10000130 10000650 28 5 23 \n", "25 10006 10000130 0 0 58 5 30 \n", "26 10006 10000650 0 0 59 1 0 \n", "27 10027 10000398 0 0 58 5 24 \n", "28 10027 10000382 0 0 65 1 0 \n", "29 10027 10000861 10000398 10000382 38 3 0 \n", "30 10027 10000915 0 0 44 5 0 \n", "... ... ... ... ... ... ... ... \n", "1585 10026 10001144 0 0 49 3 0 \n", "1586 10026 10000769 0 0 53 1 0 \n", "1587 10005 10001357 10000016 10000066 40 5 39 \n", "1588 10005 10000425 0 0 41 3 0 \n", "1589 10005 10001547 10000425 10001357 23 5 20 \n", "1590 10005 10000350 10000425 10001357 21 5 19 \n", "1591 10005 10000747 10000425 10001357 18 1 0 \n", "1592 10005 10000267 10000016 10000066 29 1 0 \n", "1593 10005 10000049 10000016 10000066 37 5 25 \n", "1594 10005 10000393 10000016 10000066 39 3 0 \n", "1595 10005 10000016 0 0 62 5 23 \n", "1596 10005 10000066 0 0 58 1 0 \n", "1597 10138 10000376 10000820 10000516 29 5 18 \n", "1598 10138 10000556 10000820 10000516 27 3 0 \n", "1599 10138 10001313 10000820 10000516 40 5 25 \n", "1600 10138 10000322 10000820 10000516 39 5 22 \n", "1601 10138 10000255 10000820 10000516 41 1 0 \n", "1602 10138 10001416 10000820 10000516 35 5 21 \n", "1603 10138 10000961 10000820 10000516 38 1 0 \n", "1604 10138 10000820 0 0 70 5 20 \n", "1605 10138 10000516 0 0 59 1 0 \n", "1606 10138 10000759 10000820 10000516 34 1 0 \n", "1607 10086 10000663 10000035 10000537 35 5 18 \n", "1608 10086 10000005 10000035 10000537 30 5 16 \n", "1609 10086 10000337 10000035 10000537 34 3 0 \n", "1610 10086 10000035 10000314 10000483 58 5 21 \n", "1611 10086 10000537 0 0 57 1 0 \n", "1612 10086 10000153 10000314 10000483 57 5 25 \n", "1613 10086 10000314 0 0 0 0 0 \n", "1614 10086 10000483 0 0 0 0 0 \n", " MaxDinks packsDay\n", "1 24 17.000 \n", "2 12 16.000 \n", "3 -9 -9.000 \n", "4 18 0.450 \n", "5 40 0.000 \n", "6 20 8.000 \n", "7 24 42.000 \n", "8 7 58.500 \n", "9 75 30.000 \n", "10 48 0.000 \n", "11 36 32.000 \n", "12 12 0.000 \n", "13 10 42.000 \n", "14 5 0.125 \n", "15 48 12.000 \n", "16 10 0.000 \n", "17 3 0.000 \n", "18 71 12.000 \n", "19 10 0.000 \n", "20 14 31.000 \n", "21 26 0.000 \n", "22 36 13.000 \n", "23 15 6.000 \n", "24 10 0.000 \n", "25 24 -9.000 \n", "26 3 0.000 \n", "27 42 41.000 \n", "28 3 0.000 \n", "29 5 14.000 \n", "30 20 23.000 \n", "... ... ... \n", "1585 24 51.00 \n", "1586 6 35.00 \n", "1587 13 0.00 \n", "1588 6 0.00 \n", "1589 24 4.50 \n", "1590 36 6.00 \n", "1591 8 0.15 \n", "1592 6 0.00 \n", "1593 30 10.00 \n", "1594 8 19.00 \n", "1595 52 0.00 \n", "1596 6 0.00 \n", "1597 32 10.00 \n", "1598 4 4.50 \n", "1599 32 13.00 \n", "1600 24 14.00 \n", "1601 6 0.00 \n", "1602 25 3.00 \n", "1603 5 0.00 \n", "1604 14 39.50 \n", "1605 2 0.00 \n", "1606 1 0.00 \n", "1607 48 15.00 \n", "1608 25 0.00 \n", "1609 10 2.30 \n", "1610 24 0.60 \n", "1611 6 0.00 \n", "1612 24 128.00 \n", "1613 -9 -9.00 \n", "1614 -9 -9.00 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gaw[,-c(5, 7)]" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 1
  2. \n", "\t
  3. 1.47368421052632
  4. \n", "\t
  5. 1.94736842105263
  6. \n", "\t
  7. 2.42105263157895
  8. \n", "\t
  9. 2.89473684210526
  10. \n", "\t
  11. 3.36842105263158
  12. \n", "\t
  13. 3.84210526315789
  14. \n", "\t
  15. 4.31578947368421
  16. \n", "\t
  17. 4.78947368421053
  18. \n", "\t
  19. 5.26315789473684
  20. \n", "\t
  21. 5.73684210526316
  22. \n", "\t
  23. 6.21052631578947
  24. \n", "\t
  25. 6.68421052631579
  26. \n", "\t
  27. 7.15789473684211
  28. \n", "\t
  29. 7.63157894736842
  30. \n", "\t
  31. 8.10526315789474
  32. \n", "\t
  33. 8.57894736842105
  34. \n", "\t
  35. 9.05263157894737
  36. \n", "\t
  37. 9.52631578947368
  38. \n", "\t
  39. 10
  40. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 1\n", "\\item 1.47368421052632\n", "\\item 1.94736842105263\n", "\\item 2.42105263157895\n", "\\item 2.89473684210526\n", "\\item 3.36842105263158\n", "\\item 3.84210526315789\n", "\\item 4.31578947368421\n", "\\item 4.78947368421053\n", "\\item 5.26315789473684\n", "\\item 5.73684210526316\n", "\\item 6.21052631578947\n", "\\item 6.68421052631579\n", "\\item 7.15789473684211\n", "\\item 7.63157894736842\n", "\\item 8.10526315789474\n", "\\item 8.57894736842105\n", "\\item 9.05263157894737\n", "\\item 9.52631578947368\n", "\\item 10\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 1\n", "2. 1.47368421052632\n", "3. 1.94736842105263\n", "4. 2.42105263157895\n", "5. 2.89473684210526\n", "6. 3.36842105263158\n", "7. 3.84210526315789\n", "8. 4.31578947368421\n", "9. 4.78947368421053\n", "10. 5.26315789473684\n", "11. 5.73684210526316\n", "12. 6.21052631578947\n", "13. 6.68421052631579\n", "14. 7.15789473684211\n", "15. 7.63157894736842\n", "16. 8.10526315789474\n", "17. 8.57894736842105\n", "18. 9.05263157894737\n", "19. 9.52631578947368\n", "20. 10\n", "\n", "\n" ], "text/plain": [ " [1] 1.000000 1.473684 1.947368 2.421053 2.894737 3.368421 3.842105\n", " [8] 4.315789 4.789474 5.263158 5.736842 6.210526 6.684211 7.157895\n", "[15] 7.631579 8.105263 8.578947 9.052632 9.526316 10.000000" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "seq(1, 10, length=20)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 1
  2. \n", "\t
  3. 3
  4. \n", "\t
  5. 5
  6. \n", "\t
  7. 7
  8. \n", "\t
  9. 9
  10. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 1\n", "\\item 3\n", "\\item 5\n", "\\item 7\n", "\\item 9\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 1\n", "2. 3\n", "3. 5\n", "4. 7\n", "5. 9\n", "\n", "\n" ], "text/plain": [ "[1] 1 3 5 7 9" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "seq(1, 10, by=2)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 2
  2. \n", "\t
  3. 2
  4. \n", "\t
  5. 2
  6. \n", "\t
  7. 2
  8. \n", "\t
  9. 2
  10. \n", "\t
  11. 2
  12. \n", "\t
  13. 2
  14. \n", "\t
  15. 2
  16. \n", "\t
  17. 2
  18. \n", "\t
  19. 2
  20. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 2\n", "\\item 2\n", "\\item 2\n", "\\item 2\n", "\\item 2\n", "\\item 2\n", "\\item 2\n", "\\item 2\n", "\\item 2\n", "\\item 2\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 2\n", "2. 2\n", "3. 2\n", "4. 2\n", "5. 2\n", "6. 2\n", "7. 2\n", "8. 2\n", "9. 2\n", "10. 2\n", "\n", "\n" ], "text/plain": [ " [1] 2 2 2 2 2 2 2 2 2 2" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rep(2, 10)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 1
  2. \n", "\t
  3. 2
  4. \n", "\t
  5. 1
  6. \n", "\t
  7. 2
  8. \n", "\t
  9. 1
  10. \n", "\t
  11. 2
  12. \n", "\t
  13. 1
  14. \n", "\t
  15. 2
  16. \n", "\t
  17. 1
  18. \n", "\t
  19. 2
  20. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 1\n", "\\item 2\n", "\\item 1\n", "\\item 2\n", "\\item 1\n", "\\item 2\n", "\\item 1\n", "\\item 2\n", "\\item 1\n", "\\item 2\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 1\n", "2. 2\n", "3. 1\n", "4. 2\n", "5. 1\n", "6. 2\n", "7. 1\n", "8. 2\n", "9. 1\n", "10. 2\n", "\n", "\n" ], "text/plain": [ " [1] 1 2 1 2 1 2 1 2 1 2" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rep(c(1,2), 5) #warto użyć opcji each" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 1
  2. \n", "\t
  3. 1
  4. \n", "\t
  5. 1
  6. \n", "\t
  7. 1
  8. \n", "\t
  9. 1
  10. \n", "\t
  11. 2
  12. \n", "\t
  13. 2
  14. \n", "\t
  15. 2
  16. \n", "\t
  17. 2
  18. \n", "\t
  19. 2
  20. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 1\n", "\\item 1\n", "\\item 1\n", "\\item 1\n", "\\item 1\n", "\\item 2\n", "\\item 2\n", "\\item 2\n", "\\item 2\n", "\\item 2\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 1\n", "2. 1\n", "3. 1\n", "4. 1\n", "5. 1\n", "6. 2\n", "7. 2\n", "8. 2\n", "9. 2\n", "10. 2\n", "\n", "\n" ], "text/plain": [ " [1] 1 1 1 1 1 2 2 2 2 2" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rep(c(1,2), each = 5) " ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
familyIDindividualIDIDFathersexethnicityalcoholDependenceAgeOnsetMaxDinkspacksDay
10084 1000008910000526F 6 5 16 24 17.000
10084 1000075810000526F 6 5 30 12 16.000
10084 10001094 0M 0 0 0 -9 -9.000
10084 1000013310001094M 6 3 0 18 0.450
10084 1000103910000526M 6 5 16 40 0.000
10084 1000019410000526F 6 3 0 20 8.000
10084 10000526 0M 6 5 38 24 42.000
10084 10000031 0F 6 3 0 7 58.500
10130 1000156510001436F 6 5 18 75 30.000
10130 1000091910001436M 6 5 33 48 0.000
10130 1000029910001436F 6 5 17 36 32.000
10130 1000048910001436M 6 3 0 12 0.000
10130 10001436 0M 6 3 0 10 42.000
10130 10001364 0F 6 1 0 5 0.125
10038 1000057210001250F 6 5 15 48 12.000
10038 1000027210001250M 6 3 0 10 0.000
10038 1000129510001250F 6 1 0 3 0.000
10038 1000059810001250M 6 5 15 71 12.000
10038 10001250 0M 6 3 0 10 0.000
10038 10001511 0F 6 3 0 14 31.000
10006 1000026410000130M 6 5 16 26 0.000
10006 1000002510000130M 6 5 18 36 13.000
10006 1000070710000130M 6 5 20 15 6.000
10006 1000140510000130F 6 5 23 10 0.000
10006 10000130 0M 6 5 30 24 -9.000
10006 10000650 0F 6 1 0 3 0.000
10027 10000398 0M 6 5 24 42 41.000
10027 10000382 0F 6 1 0 3 0.000
10027 1000086110000398F 6 3 0 5 14.000
10027 10000915 0M 1 5 0 20 23.000
...........................
10026 10001144 0M 6 3 0 24 51.00
10026 10000769 0F 6 1 0 6 35.00
10005 1000135710000016F 6 5 39 13 0.00
10005 10000425 0M 6 3 0 6 0.00
10005 1000154710000425M 6 5 20 24 4.50
10005 1000035010000425M 6 5 19 36 6.00
10005 1000074710000425F 6 1 0 8 0.15
10005 1000026710000016F 6 1 0 6 0.00
10005 1000004910000016F 6 5 25 30 10.00
10005 1000039310000016F 6 3 0 8 19.00
10005 10000016 0M 6 5 23 52 0.00
10005 10000066 0F 6 1 0 6 0.00
10138 1000037610000820F 7 5 18 32 10.00
10138 1000055610000820F 7 3 0 4 4.50
10138 1000131310000820M 7 5 25 32 13.00
10138 1000032210000820M 7 5 22 24 14.00
10138 1000025510000820F 7 1 0 6 0.00
10138 1000141610000820F 7 5 21 25 3.00
10138 1000096110000820F 7 1 0 5 0.00
10138 10000820 0M 7 5 20 14 39.50
10138 10000516 0F 6 1 0 2 0.00
10138 1000075910000820F 7 1 0 1 0.00
10086 1000066310000035M 6 5 18 48 15.00
10086 1000000510000035M 6 5 16 25 0.00
10086 1000033710000035F 6 3 0 10 2.30
10086 1000003510000314M 6 5 21 24 0.60
10086 10000537 0F 6 1 0 6 0.00
10086 1000015310000314M 6 5 25 24 128.00
10086 10000314 0M 0 0 0 -9 -9.00
10086 10000483 0F 0 0 0 -9 -9.00
\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllll}\n", " familyID & individualID & IDFather & sex & ethnicity & alcoholDependence & AgeOnset & MaxDinks & packsDay\\\\\n", "\\hline\n", "\t 10084 & 10000089 & 10000526 & F & 6 & 5 & 16 & 24 & 17.000 \\\\\n", "\t 10084 & 10000758 & 10000526 & F & 6 & 5 & 30 & 12 & 16.000 \\\\\n", "\t 10084 & 10001094 & 0 & M & 0 & 0 & 0 & -9 & -9.000 \\\\\n", "\t 10084 & 10000133 & 10001094 & M & 6 & 3 & 0 & 18 & 0.450 \\\\\n", "\t 10084 & 10001039 & 10000526 & M & 6 & 5 & 16 & 40 & 0.000 \\\\\n", "\t 10084 & 10000194 & 10000526 & F & 6 & 3 & 0 & 20 & 8.000 \\\\\n", "\t 10084 & 10000526 & 0 & M & 6 & 5 & 38 & 24 & 42.000 \\\\\n", "\t 10084 & 10000031 & 0 & F & 6 & 3 & 0 & 7 & 58.500 \\\\\n", "\t 10130 & 10001565 & 10001436 & F & 6 & 5 & 18 & 75 & 30.000 \\\\\n", "\t 10130 & 10000919 & 10001436 & M & 6 & 5 & 33 & 48 & 0.000 \\\\\n", "\t 10130 & 10000299 & 10001436 & F & 6 & 5 & 17 & 36 & 32.000 \\\\\n", "\t 10130 & 10000489 & 10001436 & M & 6 & 3 & 0 & 12 & 0.000 \\\\\n", "\t 10130 & 10001436 & 0 & M & 6 & 3 & 0 & 10 & 42.000 \\\\\n", "\t 10130 & 10001364 & 0 & F & 6 & 1 & 0 & 5 & 0.125 \\\\\n", "\t 10038 & 10000572 & 10001250 & F & 6 & 5 & 15 & 48 & 12.000 \\\\\n", "\t 10038 & 10000272 & 10001250 & M & 6 & 3 & 0 & 10 & 0.000 \\\\\n", "\t 10038 & 10001295 & 10001250 & F & 6 & 1 & 0 & 3 & 0.000 \\\\\n", "\t 10038 & 10000598 & 10001250 & M & 6 & 5 & 15 & 71 & 12.000 \\\\\n", "\t 10038 & 10001250 & 0 & M & 6 & 3 & 0 & 10 & 0.000 \\\\\n", "\t 10038 & 10001511 & 0 & F & 6 & 3 & 0 & 14 & 31.000 \\\\\n", "\t 10006 & 10000264 & 10000130 & M & 6 & 5 & 16 & 26 & 0.000 \\\\\n", "\t 10006 & 10000025 & 10000130 & M & 6 & 5 & 18 & 36 & 13.000 \\\\\n", "\t 10006 & 10000707 & 10000130 & M & 6 & 5 & 20 & 15 & 6.000 \\\\\n", "\t 10006 & 10001405 & 10000130 & F & 6 & 5 & 23 & 10 & 0.000 \\\\\n", "\t 10006 & 10000130 & 0 & M & 6 & 5 & 30 & 24 & -9.000 \\\\\n", "\t 10006 & 10000650 & 0 & F & 6 & 1 & 0 & 3 & 0.000 \\\\\n", "\t 10027 & 10000398 & 0 & M & 6 & 5 & 24 & 42 & 41.000 \\\\\n", "\t 10027 & 10000382 & 0 & F & 6 & 1 & 0 & 3 & 0.000 \\\\\n", "\t 10027 & 10000861 & 10000398 & F & 6 & 3 & 0 & 5 & 14.000 \\\\\n", "\t 10027 & 10000915 & 0 & M & 1 & 5 & 0 & 20 & 23.000 \\\\\n", "\t ... & ... & ... & ... & ... & ... & ... & ... & ...\\\\\n", "\t 10026 & 10001144 & 0 & M & 6 & 3 & 0 & 24 & 51.00 \\\\\n", "\t 10026 & 10000769 & 0 & F & 6 & 1 & 0 & 6 & 35.00 \\\\\n", "\t 10005 & 10001357 & 10000016 & F & 6 & 5 & 39 & 13 & 0.00 \\\\\n", "\t 10005 & 10000425 & 0 & M & 6 & 3 & 0 & 6 & 0.00 \\\\\n", "\t 10005 & 10001547 & 10000425 & M & 6 & 5 & 20 & 24 & 4.50 \\\\\n", "\t 10005 & 10000350 & 10000425 & M & 6 & 5 & 19 & 36 & 6.00 \\\\\n", "\t 10005 & 10000747 & 10000425 & F & 6 & 1 & 0 & 8 & 0.15 \\\\\n", "\t 10005 & 10000267 & 10000016 & F & 6 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10005 & 10000049 & 10000016 & F & 6 & 5 & 25 & 30 & 10.00 \\\\\n", "\t 10005 & 10000393 & 10000016 & F & 6 & 3 & 0 & 8 & 19.00 \\\\\n", "\t 10005 & 10000016 & 0 & M & 6 & 5 & 23 & 52 & 0.00 \\\\\n", "\t 10005 & 10000066 & 0 & F & 6 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10138 & 10000376 & 10000820 & F & 7 & 5 & 18 & 32 & 10.00 \\\\\n", "\t 10138 & 10000556 & 10000820 & F & 7 & 3 & 0 & 4 & 4.50 \\\\\n", "\t 10138 & 10001313 & 10000820 & M & 7 & 5 & 25 & 32 & 13.00 \\\\\n", "\t 10138 & 10000322 & 10000820 & M & 7 & 5 & 22 & 24 & 14.00 \\\\\n", "\t 10138 & 10000255 & 10000820 & F & 7 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10138 & 10001416 & 10000820 & F & 7 & 5 & 21 & 25 & 3.00 \\\\\n", "\t 10138 & 10000961 & 10000820 & F & 7 & 1 & 0 & 5 & 0.00 \\\\\n", "\t 10138 & 10000820 & 0 & M & 7 & 5 & 20 & 14 & 39.50 \\\\\n", "\t 10138 & 10000516 & 0 & F & 6 & 1 & 0 & 2 & 0.00 \\\\\n", "\t 10138 & 10000759 & 10000820 & F & 7 & 1 & 0 & 1 & 0.00 \\\\\n", "\t 10086 & 10000663 & 10000035 & M & 6 & 5 & 18 & 48 & 15.00 \\\\\n", "\t 10086 & 10000005 & 10000035 & M & 6 & 5 & 16 & 25 & 0.00 \\\\\n", "\t 10086 & 10000337 & 10000035 & F & 6 & 3 & 0 & 10 & 2.30 \\\\\n", "\t 10086 & 10000035 & 10000314 & M & 6 & 5 & 21 & 24 & 0.60 \\\\\n", "\t 10086 & 10000537 & 0 & F & 6 & 1 & 0 & 6 & 0.00 \\\\\n", "\t 10086 & 10000153 & 10000314 & M & 6 & 5 & 25 & 24 & 128.00 \\\\\n", "\t 10086 & 10000314 & 0 & M & 0 & 0 & 0 & -9 & -9.00 \\\\\n", "\t 10086 & 10000483 & 0 & F & 0 & 0 & 0 & -9 & -9.00 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| familyID | individualID | IDFather | sex | ethnicity | alcoholDependence | AgeOnset | MaxDinks | packsDay |\n", "|---|---|---|---|---|---|---|---|---|\n", "| 10084 | 10000089 | 10000526 | F | 6 | 5 | 16 | 24 | 17.000 |\n", "| 10084 | 10000758 | 10000526 | F | 6 | 5 | 30 | 12 | 16.000 |\n", "| 10084 | 10001094 | 0 | M | 0 | 0 | 0 | -9 | -9.000 |\n", "| 10084 | 10000133 | 10001094 | M | 6 | 3 | 0 | 18 | 0.450 |\n", "| 10084 | 10001039 | 10000526 | M | 6 | 5 | 16 | 40 | 0.000 |\n", "| 10084 | 10000194 | 10000526 | F | 6 | 3 | 0 | 20 | 8.000 |\n", "| 10084 | 10000526 | 0 | M | 6 | 5 | 38 | 24 | 42.000 |\n", "| 10084 | 10000031 | 0 | F | 6 | 3 | 0 | 7 | 58.500 |\n", "| 10130 | 10001565 | 10001436 | F | 6 | 5 | 18 | 75 | 30.000 |\n", "| 10130 | 10000919 | 10001436 | M | 6 | 5 | 33 | 48 | 0.000 |\n", "| 10130 | 10000299 | 10001436 | F | 6 | 5 | 17 | 36 | 32.000 |\n", "| 10130 | 10000489 | 10001436 | M | 6 | 3 | 0 | 12 | 0.000 |\n", "| 10130 | 10001436 | 0 | M | 6 | 3 | 0 | 10 | 42.000 |\n", "| 10130 | 10001364 | 0 | F | 6 | 1 | 0 | 5 | 0.125 |\n", "| 10038 | 10000572 | 10001250 | F | 6 | 5 | 15 | 48 | 12.000 |\n", "| 10038 | 10000272 | 10001250 | M | 6 | 3 | 0 | 10 | 0.000 |\n", "| 10038 | 10001295 | 10001250 | F | 6 | 1 | 0 | 3 | 0.000 |\n", "| 10038 | 10000598 | 10001250 | M | 6 | 5 | 15 | 71 | 12.000 |\n", "| 10038 | 10001250 | 0 | M | 6 | 3 | 0 | 10 | 0.000 |\n", "| 10038 | 10001511 | 0 | F | 6 | 3 | 0 | 14 | 31.000 |\n", "| 10006 | 10000264 | 10000130 | M | 6 | 5 | 16 | 26 | 0.000 |\n", "| 10006 | 10000025 | 10000130 | M | 6 | 5 | 18 | 36 | 13.000 |\n", "| 10006 | 10000707 | 10000130 | M | 6 | 5 | 20 | 15 | 6.000 |\n", "| 10006 | 10001405 | 10000130 | F | 6 | 5 | 23 | 10 | 0.000 |\n", "| 10006 | 10000130 | 0 | M | 6 | 5 | 30 | 24 | -9.000 |\n", "| 10006 | 10000650 | 0 | F | 6 | 1 | 0 | 3 | 0.000 |\n", "| 10027 | 10000398 | 0 | M | 6 | 5 | 24 | 42 | 41.000 |\n", "| 10027 | 10000382 | 0 | F | 6 | 1 | 0 | 3 | 0.000 |\n", "| 10027 | 10000861 | 10000398 | F | 6 | 3 | 0 | 5 | 14.000 |\n", "| 10027 | 10000915 | 0 | M | 1 | 5 | 0 | 20 | 23.000 |\n", "| ... | ... | ... | ... | ... | ... | ... | ... | ... |\n", "| 10026 | 10001144 | 0 | M | 6 | 3 | 0 | 24 | 51.00 |\n", "| 10026 | 10000769 | 0 | F | 6 | 1 | 0 | 6 | 35.00 |\n", "| 10005 | 10001357 | 10000016 | F | 6 | 5 | 39 | 13 | 0.00 |\n", "| 10005 | 10000425 | 0 | M | 6 | 3 | 0 | 6 | 0.00 |\n", "| 10005 | 10001547 | 10000425 | M | 6 | 5 | 20 | 24 | 4.50 |\n", "| 10005 | 10000350 | 10000425 | M | 6 | 5 | 19 | 36 | 6.00 |\n", "| 10005 | 10000747 | 10000425 | F | 6 | 1 | 0 | 8 | 0.15 |\n", "| 10005 | 10000267 | 10000016 | F | 6 | 1 | 0 | 6 | 0.00 |\n", "| 10005 | 10000049 | 10000016 | F | 6 | 5 | 25 | 30 | 10.00 |\n", "| 10005 | 10000393 | 10000016 | F | 6 | 3 | 0 | 8 | 19.00 |\n", "| 10005 | 10000016 | 0 | M | 6 | 5 | 23 | 52 | 0.00 |\n", "| 10005 | 10000066 | 0 | F | 6 | 1 | 0 | 6 | 0.00 |\n", "| 10138 | 10000376 | 10000820 | F | 7 | 5 | 18 | 32 | 10.00 |\n", "| 10138 | 10000556 | 10000820 | F | 7 | 3 | 0 | 4 | 4.50 |\n", "| 10138 | 10001313 | 10000820 | M | 7 | 5 | 25 | 32 | 13.00 |\n", "| 10138 | 10000322 | 10000820 | M | 7 | 5 | 22 | 24 | 14.00 |\n", "| 10138 | 10000255 | 10000820 | F | 7 | 1 | 0 | 6 | 0.00 |\n", "| 10138 | 10001416 | 10000820 | F | 7 | 5 | 21 | 25 | 3.00 |\n", "| 10138 | 10000961 | 10000820 | F | 7 | 1 | 0 | 5 | 0.00 |\n", "| 10138 | 10000820 | 0 | M | 7 | 5 | 20 | 14 | 39.50 |\n", "| 10138 | 10000516 | 0 | F | 6 | 1 | 0 | 2 | 0.00 |\n", "| 10138 | 10000759 | 10000820 | F | 7 | 1 | 0 | 1 | 0.00 |\n", "| 10086 | 10000663 | 10000035 | M | 6 | 5 | 18 | 48 | 15.00 |\n", "| 10086 | 10000005 | 10000035 | M | 6 | 5 | 16 | 25 | 0.00 |\n", "| 10086 | 10000337 | 10000035 | F | 6 | 3 | 0 | 10 | 2.30 |\n", "| 10086 | 10000035 | 10000314 | M | 6 | 5 | 21 | 24 | 0.60 |\n", "| 10086 | 10000537 | 0 | F | 6 | 1 | 0 | 6 | 0.00 |\n", "| 10086 | 10000153 | 10000314 | M | 6 | 5 | 25 | 24 | 128.00 |\n", "| 10086 | 10000314 | 0 | M | 0 | 0 | 0 | -9 | -9.00 |\n", "| 10086 | 10000483 | 0 | F | 0 | 0 | 0 | -9 | -9.00 |\n", "\n" ], "text/plain": [ " familyID individualID IDFather sex ethnicity alcoholDependence AgeOnset\n", "1 10084 10000089 10000526 F 6 5 16 \n", "2 10084 10000758 10000526 F 6 5 30 \n", "3 10084 10001094 0 M 0 0 0 \n", "4 10084 10000133 10001094 M 6 3 0 \n", "5 10084 10001039 10000526 M 6 5 16 \n", "6 10084 10000194 10000526 F 6 3 0 \n", "7 10084 10000526 0 M 6 5 38 \n", "8 10084 10000031 0 F 6 3 0 \n", "9 10130 10001565 10001436 F 6 5 18 \n", "10 10130 10000919 10001436 M 6 5 33 \n", "11 10130 10000299 10001436 F 6 5 17 \n", "12 10130 10000489 10001436 M 6 3 0 \n", "13 10130 10001436 0 M 6 3 0 \n", "14 10130 10001364 0 F 6 1 0 \n", "15 10038 10000572 10001250 F 6 5 15 \n", "16 10038 10000272 10001250 M 6 3 0 \n", "17 10038 10001295 10001250 F 6 1 0 \n", "18 10038 10000598 10001250 M 6 5 15 \n", "19 10038 10001250 0 M 6 3 0 \n", "20 10038 10001511 0 F 6 3 0 \n", "21 10006 10000264 10000130 M 6 5 16 \n", "22 10006 10000025 10000130 M 6 5 18 \n", "23 10006 10000707 10000130 M 6 5 20 \n", "24 10006 10001405 10000130 F 6 5 23 \n", "25 10006 10000130 0 M 6 5 30 \n", "26 10006 10000650 0 F 6 1 0 \n", "27 10027 10000398 0 M 6 5 24 \n", "28 10027 10000382 0 F 6 1 0 \n", "29 10027 10000861 10000398 F 6 3 0 \n", "30 10027 10000915 0 M 1 5 0 \n", "... ... ... ... ... ... ... ... \n", "1585 10026 10001144 0 M 6 3 0 \n", "1586 10026 10000769 0 F 6 1 0 \n", "1587 10005 10001357 10000016 F 6 5 39 \n", "1588 10005 10000425 0 M 6 3 0 \n", "1589 10005 10001547 10000425 M 6 5 20 \n", "1590 10005 10000350 10000425 M 6 5 19 \n", "1591 10005 10000747 10000425 F 6 1 0 \n", "1592 10005 10000267 10000016 F 6 1 0 \n", "1593 10005 10000049 10000016 F 6 5 25 \n", "1594 10005 10000393 10000016 F 6 3 0 \n", "1595 10005 10000016 0 M 6 5 23 \n", "1596 10005 10000066 0 F 6 1 0 \n", "1597 10138 10000376 10000820 F 7 5 18 \n", "1598 10138 10000556 10000820 F 7 3 0 \n", "1599 10138 10001313 10000820 M 7 5 25 \n", "1600 10138 10000322 10000820 M 7 5 22 \n", "1601 10138 10000255 10000820 F 7 1 0 \n", "1602 10138 10001416 10000820 F 7 5 21 \n", "1603 10138 10000961 10000820 F 7 1 0 \n", "1604 10138 10000820 0 M 7 5 20 \n", "1605 10138 10000516 0 F 6 1 0 \n", "1606 10138 10000759 10000820 F 7 1 0 \n", "1607 10086 10000663 10000035 M 6 5 18 \n", "1608 10086 10000005 10000035 M 6 5 16 \n", "1609 10086 10000337 10000035 F 6 3 0 \n", "1610 10086 10000035 10000314 M 6 5 21 \n", "1611 10086 10000537 0 F 6 1 0 \n", "1612 10086 10000153 10000314 M 6 5 25 \n", "1613 10086 10000314 0 M 0 0 0 \n", "1614 10086 10000483 0 F 0 0 0 \n", " MaxDinks packsDay\n", "1 24 17.000 \n", "2 12 16.000 \n", "3 -9 -9.000 \n", "4 18 0.450 \n", "5 40 0.000 \n", "6 20 8.000 \n", "7 24 42.000 \n", "8 7 58.500 \n", "9 75 30.000 \n", "10 48 0.000 \n", "11 36 32.000 \n", "12 12 0.000 \n", "13 10 42.000 \n", "14 5 0.125 \n", "15 48 12.000 \n", "16 10 0.000 \n", "17 3 0.000 \n", "18 71 12.000 \n", "19 10 0.000 \n", "20 14 31.000 \n", "21 26 0.000 \n", "22 36 13.000 \n", "23 15 6.000 \n", "24 10 0.000 \n", "25 24 -9.000 \n", "26 3 0.000 \n", "27 42 41.000 \n", "28 3 0.000 \n", "29 5 14.000 \n", "30 20 23.000 \n", "... ... ... \n", "1585 24 51.00 \n", "1586 6 35.00 \n", "1587 13 0.00 \n", "1588 6 0.00 \n", "1589 24 4.50 \n", "1590 36 6.00 \n", "1591 8 0.15 \n", "1592 6 0.00 \n", "1593 30 10.00 \n", "1594 8 19.00 \n", "1595 52 0.00 \n", "1596 6 0.00 \n", "1597 32 10.00 \n", "1598 4 4.50 \n", "1599 32 13.00 \n", "1600 24 14.00 \n", "1601 6 0.00 \n", "1602 25 3.00 \n", "1603 5 0.00 \n", "1604 14 39.50 \n", "1605 2 0.00 \n", "1606 1 0.00 \n", "1607 48 15.00 \n", "1608 25 0.00 \n", "1609 10 2.30 \n", "1610 24 0.60 \n", "1611 6 0.00 \n", "1612 24 128.00 \n", "1613 -9 -9.00 \n", "1614 -9 -9.00 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gaw[, c(-4, -6)] #wyciąganie zbioru danych bezkolumny 4 i 6" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Zastępowanie 0 i -9 wartościami NA" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " familyID individualID IDFather IDMother sex \n", " Min. :10001 Min. :1e+07 Min. : 0 Min. : 0 F:788 \n", " 1st Qu.:10033 1st Qu.:1e+07 1st Qu.: 0 1st Qu.: 0 M:826 \n", " Median :10068 Median :1e+07 Median :10000446 Median :10000403 \n", " Mean :10070 Mean :1e+07 Mean : 6871685 Mean : 6871658 \n", " 3rd Qu.:10106 3rd Qu.:1e+07 3rd Qu.:10001052 3rd Qu.:10001005 \n", " Max. :10143 Max. :1e+07 Max. :10001609 Max. :10001607 \n", " age ethnicity alcoholDependence AgeOnset \n", " Min. : 0.00 Min. :0.000 Min. :0.000 Min. : 0.000 \n", " 1st Qu.:23.00 1st Qu.:4.000 1st Qu.:1.000 1st Qu.: 0.000 \n", " Median :34.00 Median :6.000 Median :3.000 Median : 0.000 \n", " Mean :34.48 Mean :4.922 Mean :3.006 Mean : 8.769 \n", " 3rd Qu.:47.00 3rd Qu.:6.000 3rd Qu.:5.000 3rd Qu.:18.000 \n", " Max. :91.00 Max. :8.000 Max. :5.000 Max. :66.000 \n", " MaxDinks packsDay \n", " Min. :-9.00 Min. : -9.000 \n", " 1st Qu.: 3.00 1st Qu.: 0.000 \n", " Median :10.00 Median : 1.587 \n", " Mean :13.71 Mean : 11.674 \n", " 3rd Qu.:22.75 3rd Qu.: 18.000 \n", " Max. :96.00 Max. :193.000 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "summary(gaw)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ " Min. 1st Qu. Median Mean 3rd Qu. Max. NA's \n", " 0.00 6.00 12.00 17.41 24.00 96.00 226 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gaw$MaxDinks[gaw$MaxDinks == -9] = NA\n", "gaw$packsDay[gaw$packsDay == -9] = NA\n", "summary(gaw$MaxDinks)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " Min. 1st Qu. Median Mean 3rd Qu. Max. NA's \n", " 0.00 6.00 12.00 17.41 24.00 96.00 226 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gaw2[MaxDinks == -9, \"MaxDinks\"] = NA\n", "gaw2[packsDay == -9, \"packsDay\"] = NA\n", "summary(gaw2$MaxDinks)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "scrolled": true }, "outputs": [], "source": [ "gaw$IDFather[gaw$IDFather == 0] = NA\n", "gaw$IDMother[gaw$IDMother == 0] = NA\n", "gaw$age[gaw$age == 0] = NA\n", "gaw$ethnicity[gaw$ethnicity == 0] = NA\n", "gaw$alcoholDependence[gaw$alcoholDependence == 0] = NA\n", "gaw$AgeOnset[gaw$AgeOnset == 0] = NA" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ " familyID individualID IDFather IDMother sex \n", " Min. :10001 Min. :1e+07 Min. :1e+07 Min. :1e+07 F:788 \n", " 1st Qu.:10033 1st Qu.:1e+07 1st Qu.:1e+07 1st Qu.:1e+07 M:826 \n", " Median :10068 Median :1e+07 Median :1e+07 Median :1e+07 \n", " Mean :10070 Mean :1e+07 Mean :1e+07 Mean :1e+07 \n", " 3rd Qu.:10106 3rd Qu.:1e+07 3rd Qu.:1e+07 3rd Qu.:1e+07 \n", " Max. :10143 Max. :1e+07 Max. :1e+07 Max. :1e+07 \n", " NA's :505 NA's :505 \n", " age ethnicity alcoholDependence AgeOnset \n", " Min. :17.00 Min. :1.000 Min. :1.000 Min. :12.00 \n", " 1st Qu.:29.00 1st Qu.:6.000 1st Qu.:3.000 1st Qu.:17.00 \n", " Median :37.00 Median :6.000 Median :3.000 Median :20.00 \n", " Mean :40.09 Mean :5.736 Mean :3.495 Mean :22.61 \n", " 3rd Qu.:51.00 3rd Qu.:6.000 3rd Qu.:5.000 3rd Qu.:25.00 \n", " Max. :91.00 Max. :8.000 Max. :5.000 Max. :66.00 \n", " NA's :226 NA's :229 NA's :226 NA's :988 \n", " MaxDinks packsDay \n", " Min. : 0.00 Min. : 0.00 \n", " 1st Qu.: 6.00 1st Qu.: 0.00 \n", " Median :12.00 Median : 5.25 \n", " Mean :17.41 Mean : 15.16 \n", " 3rd Qu.:24.00 3rd Qu.: 21.00 \n", " Max. :96.00 Max. :193.00 \n", " NA's :226 NA's :233 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "summary(gaw)" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/html": [ "1614" ], "text/latex": [ "1614" ], "text/markdown": [ "1614" ], "text/plain": [ "[1] 1614" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nrow(gaw)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Statystyki opisowe" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "0" ], "text/latex": [ "0" ], "text/markdown": [ "0" ], "text/plain": [ "[1] 0" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "min(gaw$MaxDinks, na.rm = TRUE)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "96" ], "text/latex": [ "96" ], "text/markdown": [ "96" ], "text/plain": [ "[1] 96" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "max(gaw$MaxDinks, na.rm = TRUE)" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "17.4128242074928" ], "text/latex": [ "17.4128242074928" ], "text/markdown": [ "17.4128242074928" ], "text/plain": [ "[1] 17.41282" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mean(gaw$MaxDinks, na.rm = TRUE)" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/html": [ "231.119690560142" ], "text/latex": [ "231.119690560142" ], "text/markdown": [ "231.119690560142" ], "text/plain": [ "[1] 231.1197" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sd(gaw$age, na.rm = TRUE)^2" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "231.119690560142" ], "text/latex": [ "231.119690560142" ], "text/markdown": [ "231.119690560142" ], "text/plain": [ "[1] 231.1197" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "var(gaw$age, na.rm = TRUE)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/html": [ "37" ], "text/latex": [ "37" ], "text/markdown": [ "37" ], "text/plain": [ "[1] 37" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "median(gaw$age, na.rm = TRUE)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "?median #help" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "12" ], "text/latex": [ "12" ], "text/markdown": [ "12" ], "text/plain": [ "[1] 12" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "median(gaw[,10], na.rm = TRUE)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAgAElEQVR4nO3d62KiMBBA4aCI1gt5/7ddQXRRxEBmICE534/dblZFmR7rhbbG\nAhAzoa8AkAJCAhQQEqCAkAAFhAQoICRAASEBCggJUEBIgAJCAhQQEqCAkAAFhAQoICRAASEB\nCggJUEBIgAJCAhQQEqCAkAAFhAQoICRAASEBCggJUEBIgAJCAhQQEqCAkAAFhAQoICRAASEB\nCggJUEBIgAJCAhQQEqCAkAAFhAQoICRAASEBCggJUEBIgIIthXQIcE4sypgtfQL+sp3bcSl8\nr6v/ObEwQlqf/z5PZ1rJSWc027kdhISIbeVTzDw0H9ZVYYrq1v3H+XBfPpxfp7rtTPV2ouc5\njSm6sxTt5dTVzpj9uXfhj8tv/jzv75d5bf/xfib81p9NsyNPO7O7WHsqzP7SXzSH/6exr7lt\neURb+ez4vxdvxePDx2D23X+Uz1M1u/7tRM9z3oN75HY2TWrPU1R2OKXq8Y/7mD7OhN/eZnP/\n+zGdW/W2WLb/Km7dP7u/mrlteUTbC6nbu4/7ofK1f8v/p/p7O9HznJdnbWU70+cpmil8Tqlz\nsJ9nwm9vs3ntx2Iwocau++f/1b8tj2grIb32+el+z1Xb+tD2cr8TMqf7v46Pvd3eCdafJ3qe\n836f19wL3toZ3k9RXG297wbaqF6XUZzbOzrzeSb8Ntjt93+dmmau7V/2sVjcP93PxWtnW/t/\nbhse0eZCut/v1I9/lu2uPLX/WbV3Trbr6f1Ez3MeH1/6q/Y85eOU9e74fLLVDel5GfXjXG9n\nwm+D3X55++vxX21kzV3g4W213fcbHtHmQvr/Zf3xsK2dXHN31H3Nrwcnep6zfvyraE9jPp+Y\nPof0+p/H329nwm9fd/vXv5oPdm+r7e7d8Ig2HJLp7+tXSHZwotdqexf3flf4cno9U32f0tuZ\n8NvX3T4a0vA0Wx7R5kJ6e42z/xWpdyf48ULoc/XcvKC3f3tw/tR7xedjSv0z4bevu33wV937\n38+QtjuizYVU9ndYOXyOZAcn+j+R5hlu95LS/u0BeP+V048p9c+E377u9sFf7cTOb09f/zez\n2RFtK6T7ndnf42Wfv/btoi+v2rWnfTvR85xtbnfH5sO3l4Te3oH4nFLvTPhtuNu//dW+3Fo8\nghqEtNkRbSek5l2FyvbeXWheC3q+H9s9QO5/7fl/ouc525ckng8tXqc4Dd+ksP3L6p8Jv73t\n9tGQHorhf9oNj2g7ITXvGjR3dOduhz7uoJ4lPZ5ovgbydqLnOdu3HLp375pDwl+n+Dml/pnw\n29tuHwvp8fXj88iG50VsdUTbCal5BN7m0h6BVT4fjJ8Pxduxdt3y24me52wedLwexTeHhXWn\n+D2l/pnwW3+3j4Vk/3amqOovp2lsdUQbCknByecpqdeZ8F0vme+2OqKsQroWHsc1ep0JI1wh\nbXZEGYX0eGRwXeFMGPU7pA2PKLeQ5r5G6nUmjJoQ0jZHlFFIzXe8/K1yJoz6HdKGR5RRSMBy\nCAlQQEiAAkICFBASoICQAAWEBCggJEABIQEKCAlQQEiAAkICFBASoICQAAWEBCggJEABIQEK\nCAlQQEiAAkICFBASoICQAAWEBCggJEABIQEKCAlQQEiAAkICFBASoICQAAWEBCggJEABIQEK\nCAlQQEiAAkICFBASoICQAAWEBCggJEABIQEKCAlQ4B/S5ViaRlldFK8PNDGj1fiGVO/Mf3vV\nqwQlzGhFviFVpvi7th/dzoWp9K4Q1DCjFfmGVJjr6+OrKXSuDFQxoxX5hmTM2D8QC2a0Ir4i\npYsZrUjwHOl8az/i8XesmNGKvL/g73uvCO1qzasELcxoPYL3kar2PYqiPPIeRayY0Wp4Cgoo\nICRAAYcIpYwZrYZDhNLFjFbEIULpYkYr4g3ZdDGjFS10iJDp89wEhJjRilb4isSQAmFGK1rh\nECGGFAgzWtEKhwgxpFCY0XpWOESIIQXDjFazwh5kSPFjRlKEBMuM5KR78FSY3WnZTUCIGa3A\new9eS1Oc7HHC4ScMKRRmtB7fPXhtp1OZQ21vpfl5f8eQAmFGK/Ldg4fmfYnq8S5fbXZLbAJC\nzGhFskOETNn7h/YmIMSMViQL6e/xeIHDT6LEjFbk/9Du8HyrvD5w+EmUmNGKvL+xr3g9VjCO\nI/QZUiDMaEX+e7B6jqZwfMsYQwqGGa2GIxtgmZEcIcEyIzlCgmVGcoQEy4zkCAmWGckREiwz\nkiMkWGYkR0iwzEiOkGCZkRwhwTIjOUKCZUZyhATLjOQICZYZyRESLDOSIyRYZiRHSLDMSI6Q\nYJmRHCHBMiM5QoJlRnKEBMuM5AgJlhnJERIsM5IjJFhmJEdIsMxIjpBgmZEcIcEyIzlCgmVG\ncoQEy4zkCAmWGckREiwzkiMkWGYkR0iwzEiOkGCZkRwhwTIjOUKCZUZyhATLjOQICZYZyRES\nLDOSIyRYZiRHSLDMSI6QYJmRHCHBMiM5QoJlRnKEBMuM5AgJlhnJERIsM5IjJFhmJEdIsMxI\njpBgmZEcIcEyIzlCgmVGcoQEy4zkCAmWGckREiwzkiMkWGYkR0iwzEiOkGCZkRwhwTIjOUKC\nZUZyhATLjOQICZYZyRESLDOSIyRYZiRHSLDMSM5/D16OpWmU1WWpTcxgRqyx7XjFNaOk+e7B\netf7bN0vsolZRjaS9SdIbDNKmu8erEzxd20/up0LUy2xiVkIaSi2GSXNdw8W5vr6+GqKJTYx\nCyENxTajpPnuwbdnH7+fihBSILHNKGl8RUpXbDNKmuA50vnWfhTH429CGoptRknz3oP73itC\nu3qRTcxBSF9ENqOkCd5Hqtr3KIryGMN7FIT0TVwzSloqRzYQkgj7SYqQYNlPcsI9eNoZU54X\n3cQ0hDQqmhklTfY+Uvds9ucLQoQUSmwzSpoopMpUtbW3ypyW2MS86xNw27GKbUZJE4VUmPY1\n1drsltjEvOsTcNuxim1GSROF9DzsZHj4yerfykBIQ7HNKGmikA7PIYU//ISQhmKbUdL8QyqP\np7P5u39YVxEcfkJIQ7HNKGn+Ib0eEhhThD/8hJCGYptR0rz34PV6OpVl+3S2+jkjQgomshkl\njSMbYNlPcoQEy36S896D9cGYfXfgSQTffUlIX0Q2o6T57sG6ePycp8eFhB8SIQ3FNqOk+X+H\n7Ok+qVPR/pSnCIZESEOxzShp/j+zof3rVuxuUQyJkIZim1HSZEd/3+/w9vsohkRIQ7HNKGm+\ne3Bnnm9M7PYxDImQhmKbUdJ89+DJHLqPbmYfwZAIaSi2GSXNew9Wr8mcHQcPE1Iokc0oaf57\n8Fo+P7odwg+JkL6Ja0ZJ48gGWPaTHCHBsp/kCAmW/SRHSLDsJzlCgmU/yaUeEr9adhJ2iFTq\nIc1azhc7RIqQYNkhcoQEyw6RIyRYdogcIcGyQ+QICZYdIkdIsOwQOUKCZYfIERIsO0SOkGDZ\nIXKEBMsOkSMkWHaIHCHBskPkCAmWHSJHSLDsEDlCghXsEL7Tq0NIsJKQtC5o6wgJlpDkCAmW\nkOQICZaQ5AgJlpDkCAmWkOQICZaQ5AgJlpDkCAmWkOQICZaQ5AgJlpDkCAmWkOQICZaQ5AgJ\nlpDkCAmWkOQICZaQ5AgJlpDkCAmWkOQICZaQ5AgJlpDkCAmWkOQICZaQ5AgJlpDkCAmWkOQI\nCZaQ5AgJlpDkCAmWkOQICZaQ5AgJlpDkCAmWkOQICZaQ5AgJlpDkCAmWkOQICZaQ5AgJlpDk\nCAmWkOQICZaQ5AgJlpDkCAmWkOQICZaQ5AgJlpDkCAmWkOQICZaQ5Pxv+OVYmkZZXZbaxAyE\n9M3yMyKkju8Nr3fmv/0im5iFkIbWmBEhdXxveGWKv2v70e1cmGqJTcxCSENrzIiQOr43vDDX\n18dXUyyxiVkIaWiNGRFSx/eGGzP2D7VNzEJIQ2vMiJA6fEVKF1+RViR4jnS+tR/xHClWa8yI\nkDreN3zfe0VoVy+yiTkI6YsVZkRIHcH7SFX7HkVRHnkfKVbLz4iQOhzZAEtIcoQES0hyHCKU\nMg4RWg2HCKWLQ4RWxCFC6eIQoRXxhmy6eEN2RQsdImT6PDcx7/poLCdmjRkRUoevSOniK9KK\nOEQoXRwitCIOEUoYhwith0OEUsYhQqvhyAZYQpIjJFhCkvO+4fXBmP25u5Cfl0JIoawwI0Lq\neB8iVDwO4npcCCHFaI0ZEVLH/+Xv031Sp6I9hIuQorTGjAip4/+GbPvXrdjdCClSa8yIkDrS\nQ4Tq/Z6QIrXGjAip43vDd+b5Bt9uT0hxWmNGhNTxveEnc+g+upk9IUVpjRkRUsf7hlevyZwd\nBw8TUigrzIiQOv43/Fo+P7odCClOy8+IkDoc2QBLSHKEBKsZ0gfh9doOQoJd7itSPjuakGAJ\nSY6QYAlJjpBgCUmOkGAJSY6QYAlJjpBgCUmOkGAJSY6QYAlJjpBgCUmOkGAJSY6QYAlJjpBg\nCUmOkGAJSY6QYAlJjpBgCUmOkGAJSY6QYAlJjpBgCUmOkGAJSY6QYAlJjpBgCUmOkGAJSY6Q\nYAlJjpBgCUmOkGAJSY6QYAlJjpBgCUmOkGBn7JDPH5JPSB1Cgp0T0rx/57Oj+7d0d7wtvYnF\n5BJS6BkR0oj+Lb1/oV5iToSkKPSMCGlE/5bWf4cl5kRIikLPiJBGfN7Sy3GnPSdCUhZyRoQ0\n4sstvRb3+7zTopvQl1NINuCMCGnE8Jae9+3LmvsFN7GAvEIKNyNCGvFxS+vj/a5ud67vkyq/\nn0G8iWVkFFLQGRHSiLdbemmeyFbXx3+o7QNC0hR4RoQ04u19pPsd3al+/kexxCYWk0tIoWdE\nSCPe3kcqz0tvYjG5hBR6RoQ04u19pOU3sZhcQgo9I0Ia8XZL66p5rFBUutMiJE2BZ0RII/q3\n9Fa0z16NKVTfNyckRaFnREgj+rd0bw7N/Vxd6b2s+rmJxeQSUugZEdKItxcbzOcH6ptYTC4h\nhZ4RIY3o39LCPB5414QUrdAzIqQR/Vtamf3l/tdlb6qlNrGYXEIKPSNCGvF2S/fdtw/rHcM1\n2MRSZoY0YrnrpybwjAhpxPst/SubESkeVTzcxEJUviJtYuxhZ0RII1a4pYQUP0KSIiT3cgYI\nSYqQ3MsZICSpt1vafAuz/rNuQtIUeEaENKJ/S4/LvHxFSIpCz4iQRry/Iav8WtBwE4vJJaTQ\nMyKkEV8PEVpuEwqXNustoORCCj0jQhrRv6WlWeS7XZRDWn85JqFnREgj+rf0VrSHnyy5icUu\nLZeQQs+IkEa8P7TbwIsNmYcUekaENIKQ3MsxCT0jQhqxuTdkMw9pIYQkRUju5QwQktT7LT2X\nzSOGctKPA7gcy/YRRlk5nv0SkqqwMyKkEW+3dP946D3lB2vUu96j9d/fG0NImgLPiJBG9G/p\nyezb72A+mYPzfJUp/h4/N/d2Ln5/tyYhKQo9I0Ia0b+lzc8D6H7Yk/N8hbm+Pr7+/tG5hKQo\n9IwIacT7y9928pDM5xmnbUIu85BCz4iQRvRv6a67t7uanfN8fEUKI/SMCGnEl+dI5ylHGN8f\nf58fT3d5jrSm0DMipBFvt7Sc8RNq9r1XhHY/D6QkJE2BZ0RII4bvI5nyb9I5L1U706I88j7S\nmsLOiJBGrHBLCSl+hCRFSO7lDBCSlPCWnnbG+TvkCCks1RkR0oj3txqmH6L/OEn3bPb3j6Em\nJEWhZ0RII0QhVab5xXG36vdLsYSkKPSMCGnEl1t62U/4HVbtkLrfMVL/fnOQkPQFmxEhjfh2\nS+sJB0S+HaYyvHc0Zs5d5xyE1Ao1I0Ia8fWWTn3YcHgOiUOEVhdoRoQ04tstPf3e6Y/zmfJ4\nOpvmfcG64hCh1YWaESGN+P5iw9F9vv8PCYwpOERoLaFnREgjvoW0m/JTca/X06ks26ez1e+f\nWUhIikLPiJBGrHBLCSl+hCRFSO7lDBCS1PfnSKqvWhOSotAzIqQRhORejknoGRHSiLdbeiya\nYxsvRaBfPS+5tFxCCj0jQhrRv6XH7nv8r8Z9/MmMe0ZCUhR6RoQ04v2h3ecH406EFEToGRHS\niP4tLV73du6fUGOvkx9cEJKi0DMipBH9W9r81Jn7X5N+Qk0zyt/f4vJ1E3KZhxR6RoQ04u2W\nPn/qzLS9f+r92LTJmxDLPKTQMyKkEe+39K/9CTWOb0uWbWKhS8smpMAzIqQRK9xSQoofIUkR\nkns5A4Qk9X5L5/wSK89NLHRp+YQUdkaENGL4YoOd9EusfDex1KVlE1LgGRHSiP4tnfNLrDw3\nsdil5RJS6BkR0oj3N2Sn/xIrz00sdmm5hBR6RoQ0on9L5/wSK89NLHZpuYQUekaENKJ/S+f8\nEivPTSx2abmEFHpGhDTiy3OkiYefeG1isUvLJaTQMyKkEW+3dM4vsfLcxFKXlktIq8/o43sx\nCGnE8H2kqb/EynMTC11aNiGtPSNHGYTUWeGWElL8CEmqf0vLicfcCzax2KXlEtLqMyKkaT5f\n/l54E4tdWi4hrT4jQprm8+XvhTex2KXlEtLqMyKkafq3tC73jl9+Ld7EYpeWS0irz4iQpnl/\naKf+89I+N7HYpeUS0uozIqRpCMm9HBNCihQvf7uXM0BIUoTkXs4AIUk9b+lCL6v2N7HopeUQ\nUpAZEdI07yEtMipCUhJkRoQ0DSG5l2NBSBEjJPdyLAgpYoTkXo4FIUWMkNzLsSCkiBGSezkW\nhBSx/yFN/l06vptY9NLyCCnAjAhpGkJyL8eCkCK2wi0lpPgRkhQhuZczQEhShORezgAhSRGS\nezkDhCRFSO7lDBCSFCG5lzNASFKE5F7OACFJEZJ7OQOEJEVI7uUMEJIUIbmXM0BIUoTkXs4A\nIUkRkns5A4QkRUju5QwQkhQhuZczQEhShORezgAhSRGSezkDhCRFSO7lDBCSFCG5lzNASFKE\n5F7OACFJEZJ7OQOEJEVI7uUMLBbSJ+9rGDtCci9nYK2vSOnuYUJyL2eAkKQIyb2cAUKSIiT3\ncgYISYqQ3MsZICQpQnIvZ4CQpAjJvZwBQpIiJPdyBghJipDcyxkgJClCci9ngJCkCMm9nAFC\nkiIk93IGCEmKkNzLGSAkKUJyL2eAkKQIyb2cAUKS8r9ll2PZfodJWV2W2sSMSyOkbxRmREjT\n+N6yetf7bq39IpuYdWmENKQyI0KaxveWVab4u7Yf3c6FqZbYxKxLI6QhlRkR0jS+t6ww19fH\nV1MssYlZl0ZIQyozIqRpfG/Z23ff//5WfEIKRGVGhDQNX5Hcy1vlNSPHjyshpBGC50jnW/sR\nz5Fi5TUjYRmENNe+d6e1qxfZxJxLI6QvfGZESH4E7yNV7XsURXnkfaRYecyIkPyscMsIKX6E\nJEVI7uUMEJKU4KEdhwhFz2NGhOTH95ZxiFD8vGZESH4EL39ziFDkvGYUNKQN/8x936vKG7Lx\n83tDdvR/pvy3NKR5J4+J71V1HH6y3N0KIU3mNSNC8sNXJPfyVvEVaUWC50gcIhS57R0iNDj5\ndp4zeV81DhGK3+YOEZp56THxv2ocIhS/rR0ilGVIgTZBSEsgJClCci9ngJCkCMm9nAFCkiIk\n93IGCEmKkNzLGSAkKd+rNuP1fUIKxGtGhOTH96qdCCl6XjMiJD/eV+1a/D4wX2ETcy6NkL7w\nmREh+fG/atffB51obGLGpRHSNx4zIiQ/gqt26h0TudAmpl8aIX01f0aE5IdX7dzLGSAkKUJy\nL2eAkKQIyb2cAUKSIiT3cgYISYqQ3MsZICQpQnIvZ4CQpAjJvZwBQpIiJPdyBghJipDcyxkg\nJClCci9ngJCkCMm9nAFCkiIk93IGCEmKkNzLGSAkKUJyL2eAkKQIyb2cAUKSIiT3cgYISYqQ\n3MsZICQpQnIvZ4CQpAjJvZwBQpIiJPdyBghJipDcyxkgJClCci9ngJCkCMm9nAFCkiIk93IG\nCEmKkNzLGSAkKUJyL2eAkKQIyb2cAUKSIiT3cgYISYqQ3MsZICSpiEMy383aCCFNQ0hSMYc0\n59IISYSQpAjJvZwBQpIiJPdyBghJipDcyxkgJClCci9ngJCkCMm9nAFCkiIk93IGCEmKkNzL\nGSAkKUJyL2eAkKQIyb2cAUKSIiT3cgZWC+n3AV+EtMQmCGk9ob4iEdIKmyCk9QQL6fcRyYSk\nsQlCWg9fkaQIyb2cAUKSIiT3cgYISYqQ3MsZICQpQnIvZ4CQpAjJvZwBQpIiJPdyBghJipDc\nyxkgJClCci9ngJCkCMm9nAFCkiIk93IGCEmKkNzLGSAkKUJyL2eAkKQIyb2cAUKSIiT3cgYI\nSYqQ+suzfm5/SghJipC8l1NCSFKE5L2cEkKSIiTv5ZQQkhQheS+nhJCkCMl7OSWEJEVI3ssp\nISQpQvJeTgkhSRGS93JKCEmKkLyXU0JIUoTkvZwSQpIiJO/llBCSFCF5L6eEkKT8r9rlWLZH\ndJbVZZlNEJKYx4wIyY/vVat3vaOj94tsgpCEvGZESH58r1plir9r+9HtXJhqiU0QkpDXjAjJ\nj+9VK8z19fHVFEtsgpCEvGZESH68P8vN2D/0NjHn0ghpyGtGhOSHr0jey9HjK9KKBM+Rzrf2\nI54jxcprRoTkx/uq7XuvCO3qJTZBSFI+MyIkP/5X7VK171EU5ZH3kWLlMSNC8rPCVSOk+BGS\n1EJXTeOnWRHSsr7PiJD8CK/aaWdMeV5mE4SkY96MCMmP92d5e8bu2ezPF4QIKRSvGRGSH1FI\nlalqa2+VOS2yiTmXRkhDXjMiJD+ikArTvqZam90im5hzaYQ05DUjQvIjCun5HJVDhKLkNSNC\n8iMK6fAcEocIxchrRoTkxz+k8ng6m7/7h3XFIUJR8ppR3CHF+3tC/EN63RJjCg4RipHXjOIO\nyfHvgLyvyvV6OpVl+3S2+jkjQgrGZ0aE5GeFq0JI8SMkKULyXk4JIUkRkvdySghJipC8l1NC\nSFKE5L2cEkKSIiTv5ZQQkhQheS+nhJCkCMl7OSWEJEVI3sspISQpQvJeTgkhSRGS93JKCEmK\nkLyXU0JIUoTkvZwSQpIiJO/llBCSFCF5L6eEkKQIyXs5JYQkRUjeyykhJClC8l5OCSFJEZL3\nckoISYqQvJdTQkhShOS9nBJCkiIk7+WUEJIUIXkvp4SQpAjJezklhCRFSN7LKSEkKULyXk4J\nIUkRkvdySghJipC8l1NCSFKE5L2cEkKSIiTv5ZQQkhQheS+nhJCkCMl7OSWEJEVI3sspISQp\nQvJeTgkhSRGS93JKthpSPL+bmZC8l1Oy1ZB+//eaCMl7OSWEJEVI3sspISQpQvJeTgkhSRGS\n93JKCEmKkLyXU0JIUoTkvZwSQpIiJO/llBCSFCF5L6eEkKQIyXs5JYQkRUjeyykhJClC8l5O\nCSFJEZL3ckoISYqQvJdTQkhSMYT0eTD8z4PiCWkJhCQVRUhzlglpCYQkRUjeyykhJClC8l5O\nCSFJEZL3ckoISYqQvJdTQkhShOS9nBJCkiIk7+WUEJIUIXkvp4SQpAhpwvKM94s3ipCkCEn5\nimwTIUkRkvIV2SZCkiIk5SuyTYQkRUjKV2SbCEmKkJSvyDYRkhQhKV+RbUokpIAvrBKS8hXZ\npkRCcpx8SYSkfEW2iZCkCEn5imwTIUkRkvIV2SZCkiIk5SuyTYQkRUjKV2SbCEmKkJSvyDYR\nkhQhKV+RbSIkKUJSviLbREhShKR8RbaJkKQISfmKbBMhSRGS8hXZJkKSIiTlK7JNhCRFSMpX\nZJsISYqQlK/INuUR0pLfZUFIyldkmzIJ6fd/i/hf2OVYtlmX1UW4CUJaiseMkgrp95cg1e8D\n9D1zvetdgb1sE4S0DK8ZJRWS7OSz+J65MsXftf3odi5MNW0Ts341X/QhzfP9ohflN6PR/5ny\n34Q0V2Gur4+vppi2iQW/EETzFWne8qJUZkRI0/ie+e0udnh/+/3OeOadeFI897MEM5pJtLM9\nzzfj3g6BMKMVCZ4jnW/tR87H3wiEGa3I+8vZvvclcVdrXiVoYUbr8X9ceKna9yiK8uh4jwLB\nMKPVxP9uCLABhAQoICRAASEBCggJUEBIgAJCAhQQEqCAkAAFhAQoICRAASEBCggJUEBIgAJC\nAhQQEqCAkAAFhAQoiCGkNX/iUjChd7Kv0PtNZM39tOK2xsy6DvOu8IKnXvKKRER2xYU3O+zZ\no93WmGg+f6O5IhEhpPi2NSaaz99orkhECCm+bY2J5vM3misSEUKKb1tjovn8jeaKRISQ4tvW\nmGg+f6O5IhEhpPi2NSaaz99orkhECCm+bY2J5vM3misSEUKKb1tjovn8jeaKRISQ4tvWmGg+\nf6O5IhEhpPi2NSaaz99orkhECCm+bY2J5vM3misSEUKKb1tAsggJUEBIgAJCAhQQEqCAkAAF\nhAQoICRAASEBCggJUEBIgAJCAhQQEqCAkAAFhAQoICRAQfCQqsIUVe0+3Wn3Ot20s1zM5A1c\nD8YcbtNOXfdO4Tjx6blzp58lHrP396cZ+39gzkCGZoxIT+iQ9u1vDdg5T1e1pyvqyWepCzN1\nA+cZl30rHie+uU98ff42hN7ppt7c4Gbv708z9v/AnIEMzRiRosAhXUxxtdfCXBynu5pD3dzF\nHyafpXx8Gk85dXE/SV2aasqpD83J7p9m7ity/5/Hzu2dburNDW7+/v40Y/8PzBnI0PQRaQoc\nUmXO9z//zNFxuvJxPZvhTDvLX/fbcSac+q/d8bUpppzaTL0iJ7PvTts73dSbG9zs/f1pxv7/\nct4ZAxmaPCJVgUMqTfMF+GrKaSdvds6ks9yen8YTTn0w1+lXp3vA0gz594nvnwzdRHunm3lz\ng5u8vz/N2f8DswYyNHlEqgKH1Lv3mKA2+4ln2Zvb4wQTTr0z9li0D2UmnPrYPW44uk58/TxB\n89e8mxvc9P39ac7+H5g1kKHJI1K1qZBOzVfqKWc5mj87eZDGlO2T02mnPjVPZYvTlBNvPsvY\nL1sAAAQNSURBVKTJ+/vTrP0/MG8gQzNGpGdLId2KctpZ2q/lM0JqntseJt6DHdvXgY5TLnrr\nIU3e35/m7f+BeQMZmjEiPRsKqS72E8+ya145nRFS85D81rxI6j71qXnccB/yKf2Qpu/vT/P2\n/8CsgQzNGZGewCMtZtzS/W7iWQ7tazWPE0zYQG9vu0+9M81D97oZsvPE3f8Ucy4/IpP396eZ\n+39g1kCG5oxIT+CRPl5WuU14WeW2298mnqX/6+EnbKD3Uu+Uy55+4rdX7W7/X7WbcnODm7G/\nP83c/wOzBvJt86Kzewoc0rG98zq3r7P8dDb7yWfpD3LCBh4nuTUbcJ/6cR/XvsfhPHE30d7p\nJt/c4Obs708z9//ArIEMzRmRnsAhTX3r+faa6+SzPD6NJ5z6/mC8bh5T/005dWWaI7eqSe+6\ndyFt8cgGj/39afL+/7LxGQMZmjMiPaEfre/ae66962SH//dxU8/SfRpPOPXx/0ncp95PP/Hz\nofluzuXHwWN/f5q+/wdmDWRoxoj0hA7pcaSu82S9BwvTzzJ5A+f98yQTTv3/FK4TP0Oqp58l\nFh77e3gR7V9e5541kKEQ+zt0SEASCAlQQEiAAkICFBASoICQAAWEBCggJEABIQEKCAlQQEiA\nAkICFBASoICQAAWEBCggJEABIQEKCAlQQEiAAkICFBASoICQAAWEBCggJEABIQEKCAlQQEiA\nAkICFBASoICQAAWEBCggJEABIQEK8gjp4/fDr/Hr4jHTxme0savraeNDysLGZ7Sxq6tja0PK\n0dZmtLGrq2NrQ8rR1ma0sas7zcUcmr/O5tz8dTCXx1ROO1Ocmg8e/6zMMdQVRHIzSjIkW7Q3\n62DaXwxvisdUyvb33e9tN6Sq/RChJDajNEM6mj/bzKK4//l3v1NrpnI2+9rW++YesPnnhmaU\npsRmlGZIt2YCF1Oaq7V7c2unUpr6/j+1KdshbWlGaUpsRmmGdJ9MfZ/D9X5H186rGZJ5aj7c\nG3MJfR1zl9aMEg3pfB9PsbO73eMRxGBIpjC70Ncxd2nNKNGQrNld7k9jK1PvmkcLj8n8/09z\nuZr2IToCSmpGqYZUmcP9Kev5/mfzKuvj8ff5+Z/NP4/ts1wElNSMUg3pcn9o0N7NtaNppvJn\nivvT2lP3RNba3WbeokhVUjNKNaT7DJoH2PvHfVo7lX376Lu4df+8tlNEQCnNKNmQju07fcfu\n/b7nu+bmcHv989jc8SGglGaUbEjAmggJUEBIgAJCAhQQEqCAkAAFhAQoICRAASEBCggJUEBI\ngAJCAhQQEqCAkAAFhAQoICRAASEBCggJUEBIgAJCAhQQEqCAkAAFhAQoICRAASEBCggJUEBI\ngAJCAhQQEqCAkAAFhAQo+Af2FB7Mxpf3FgAAAABJRU5ErkJggg==", "text/plain": [ "Plot with title \"empiryczny\"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "par(mfrow = c(1, 2))\n", "hist(rnorm(1000, mean(gaw$age, na.rm = TRUE), sd(gaw$age, na.rm = TRUE)), main = \"teoretyczny\", xlab = \"wiek\", ylim = c(0, 300))\n", "hist(gaw$age, main = \"empiryczny\", xlab = \"wiek\", ylim = c(0, 300))" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "\"unable to access index for repository https://cran.r-project.org/bin/windows/contrib/3.6:\n", " nie można otworzyć adresu URL 'https://cran.r-project.org/bin/windows/contrib/3.6/PACKAGES'\"installing the source package 'moments'\n", "\n" ] } ], "source": [ "install.packages(\"moments\")" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/html": [ "37" ], "text/latex": [ "37" ], "text/markdown": [ "37" ], "text/plain": [ "[1] 37" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "40.092939481268" ], "text/latex": [ "40.092939481268" ], "text/markdown": [ "40.092939481268" ], "text/plain": [ "[1] 40.09294" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "median(gaw$age, na.rm = TRUE)\n", "mean(gaw$age, na.rm = TRUE)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "0.629351440420409" ], "text/latex": [ "0.629351440420409" ], "text/markdown": [ "0.629351440420409" ], "text/plain": [ "[1] 0.6293514" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "library(moments)\n", "skewness(gaw$age, na.rm = TRUE)" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ " Min. 1st Qu. Median Mean 3rd Qu. Max. NA's \n", " 17.00 29.00 37.00 40.09 51.00 91.00 226 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "-0.019693713900893" ], "text/latex": [ "-0.019693713900893" ], "text/markdown": [ "-0.019693713900893" ], "text/plain": [ "[1] -0.01969371" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "summary(gaw$age)\n", "skewness(log(gaw$age), na.rm = TRUE)" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAepElEQVR4nO3dbUPaWhBF4RNAQOTl///bQkCaKCrh7JDZzHo+3FpbJwNhXRSo\nlgOAamXqBYBXQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEB\nAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKE\nBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIRkrhdEXFmTFCSHFxZowQUlycGUCA\nkCa0XzalWe7at0/3NutZmX0cDuumzD+67yxv///O+ZfdrCxLaS5zmvb9++Xxb843l79xcfmo\nzfw4ZNv+pv9BEOHKnM6uOd/Y22iOv87b3+2WvXcu2t81u8tvL7+cknkrpa3msCll+X/a8vA9\npPPIcizpywdBhZCmc7nln+8jrjf9y3sXvXeW2eW3/9/7/nH5S4dFm93ntFMoX0O6eDscvnwQ\nVAhpMuvjvcr+sD/eR7wfzvdI+9P7ymzb/nI4v7M53tw3zfl+5P97j3/1cDjeLZ3uqHZtZscP\nabaH/fzS3Mny+lHNpr0vKl8/CDKENJnjfcIph8P5PuLy2dz/X85/1EZ2+jzsrffe9tOz1fmz\ns2Mv63ba6Z372Wp3mX/p6POv788f3fsgyBDSZP5/ytUcupF8/+X0xqz33rbA/fkjm/a35etj\nB58dXf/k/GvvgyBDSJP5H9LnY2s//fL5xtf3tvdC/Xurq/X1wYR+SL0PggwhTab/+PNPIe07\nf/o1pGMO88O89/XTp86Dcl9C6n4QZAhpMovejfmnkNqvZDbXr6M6f3hoW9xcHvWb975G6j64\n/SWk7gdBhpAm835+SO79dA/xc0inRxtOj9qtv/3hof066Gh1erP3qF3vSaKvIXU+CDKENJ3r\nMz/9x+n6v3Qej/ge0q79s31/2vrGKxu6H9b9IKgQ0nQ2lxt7e+fxU0jn+4+vr2z4HDErn0+w\nHj5+eWXDofdhnQ+CCiFNqH113KL3IPX3X95npVnub/ydk+PnhdcvtE6v3LtM+z2k7gdBhJAi\n+/qY9jfrRx41eOiD8DtCiuyvkLbNAy89feiD8AdCiuz3kM6fvG0Hjxz+QfgTIUV2R0hDH8bm\nse9xEFJkv4d0+kdJ70NHPvRB+BMhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBAS\nIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBA\nSIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiA\nACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoSkVu4w9Y6Q45yq\n3XGNcqW/Hs6pGiGlxDlVI6SUOKdqhJQS51SNkFLinKoRUkqcUzVCSolzqkZIKXFO1QgpJc6p\nGiGlxDlVI6SUOKdqhJQS51SNkFLinKoRUkqcUzVCSolzqkZIKXFO1QgpJc6pGiGlxDlVI6SU\nOKdqhJQS51SNkFLinKoRUkqcUzVCSolzqkZIKXFO1QgpJc6pGiGlxDlVI6SUOKdqhJQS51SN\nkFLinKoRUkqcUzVCSolzqkZIKXFO1QgpJc6pGiGlxDlVI6SUOKdqhJQS51SNkFLinKoRUkqc\nUzVCSolzqkZIKXFO1QgpJc6pGiGlxDlVI6SUOKdqhJQS51SNkFLinKoRUkqcUzVCSolzqkZI\nKXFO1QgpJc6pGiGlxDlVI6SUOKdqhJQS51RNFFK5Q/WukOFkqKlC0ozBk3Ay1AgpJU6GGiGl\nxMlQI6SUOBlqhJQSJ0ONkFLiZKgRUkqPn4yP1aJ9MmOx/BDu44+QUnr0ZOxnnScG59KVzBFS\nSo+ejGVp3rftW7tNU5a6hewRUkqPnoymbK9vb0ujWeYlEFJKj56M3gu9eNVXByGlxD2SGiGl\nVPE10mbXvsXXSH2ElNLDJ2PeedRutleuZI6QUqp4HmnZPo/ULFY8j9RFSClxMtQIKSVOhhoh\npVR5MtazUhYbzSovgpBSqnse6fKIAw/adRBSSlUhLctyfzjslmWtXMkcIaVUFVJT2se992Wm\nW8geIaVUFdLnS4O+v0Qo8XeNIqSUqkJ6+wzp15cIJTvfhJTS4yEtVutNeT++uV/+/mhDsvNN\nSCk9HtL107ZSml9fIpTsfBNSSg+fjO12vV4s2occlr+/1C7Z+SaklJ5wMpKdb0JKiZDUCCkl\nQlIjpJQISY2QUiIkNUJKqfbh7ztevJDsfBNSSo+ejDUh/YCQUnr8eaTm3u+vmux8E1JKj5+M\n7b3/DCnZ+SaklCpOxrrzre1GOoQjQkqJR+3UCCklQlIjpJQISY2QUiIkNUJKiZDUCCklQlIj\npJQISY2QUiIkNUJKiZDUCCklQlIjpJQISY2QUiIkNUJKiZDUCCklQlIjpJQISY2QUiIkNUJK\niZDUCCklQlIjpJQISY2QUiIkNUJKiZDUCCklQlIjpJQISY2QUiIkNUJKiZDUCCklQlIjpJQI\nSY2QUiIkNUJKiZDUCCklQlIjpJQISY2QUiIkNUJKiZDUCCklQlIjpJQISY2QUiIkNUJKiZDU\nCCklQlIjpJQISY2QUiIkNUJKiZDUCCklQlK7p4B7SI6EZyEkNe6RUiIkNUJKiZDUCCklQlIj\npJQISY2QUiIkNUJKiZDUCCklQlIjpJQISY2QUiIkNUJKiZDUCCklQlIjpJQISY2QUiIkNUJK\niZDUCCklQlIjpJQISY2QUiIkNUJKiZDUCCklQlIjpJQISY2QUiIkNUJKiZDUCCklQlIjpJQI\nSY2QUiIkNUJKiZDUCCklQlIjpJQISY2QUiIkNUJKiZDUCCklQlIjpJQISY2QUiIkNUJKiZDU\nCCklQlIjpJQISY2QUiIkNUJKiZDUCCklQlJ7yZDKPZ63TkCEpPaaIYn+zusiJDVCSomQ1Agp\nJUJSI6SUCEmNkFIiJDVCSomQ1AgpJUJSI6SUCEmNkFIiJDVCSomQ1AgpJUJSI6SUCEmNkFIi\nJDVCSomQ1AgpJUJSI6SUCEmNkFIiJDVCSomQ1AgpJUJSI6SUCEmNkFIiJDVCSomQ1AgpJUJS\nI6SUCEmNkFIiJDVCSomQ1AgpJUJSI6SUCEmNkFIiJDVCSomQ1AgpJUJSI6SUCEmNkFIiJDVC\nSomQ1AgpJUJSI6SUCEktb0ipf14zIanlDUkzxhQhqRFS3RhThKRGSHVjTBGSGiHVjTFFSGqE\nVDfGFCGpEVLdGFOEpEZIdWNMEZIaIdWNMUVIaoRUN8YUIakRUt0YU4SkRkh1Y0wRkhoh1Y0x\nRUhqhFQ3xhQhqRFS3RhThKRGSHVjTBGSGiHVjTFFSGqEVDfG1OMX7WO1aP/R42L5MdYhLBFS\n3RhTj160/azzD4jnoxzCFCHVjTH16EVbluZ927612zRlOcYhTBFS3RhTj160pmyvb29LM8Yh\nTBFS3RhTj1603jeE+f27w7zwtXcLIdWNMcU9khoh1Y0xVfE10mbXvsXXSH2EVDfG1MMXbd55\n1G62H+UQngipboypiueRlu3zSM1ixfNIXU8M6Xnf25SQ/sIrG9Ri3SMR0pMQkhoh1Y0xxUuE\n1Aipboyp7kWbrXZ3fxwvEfoJIdWNMdV/XrXc3RIvEfoJIdWNMdW9aPv3t7tb4gnZnxBS3RhT\nXy/ax2p2V0t/vEQoyU+XuoWQ6saYunHRts3xxr/+4+O4R/oJIdWNMfX9om3mdzyAwEuEfkRI\ndWNMfblo+9Xx7mi22R9rWvz+gbxE6AeEVDfGVO+ifZwebFieP2f780sbXiJ0GyHVjTHVex7p\neN+y/rxz+f3rnkcPkQAh1Y0x1XvwbbEZ+xAJEFLdGFO955HGP0QChFQ3xlTvou2Xp8/nmqW2\nqBe+9m4hpLoxproXbde0jzCU0tz/mruBh0iAkOrGmOpetHl5O90X7Zd/PfR9OHz9R2X3HiIB\nQqobY+rmK33ueFXPmpB+QEh1Y0x1L1pTzl8c7e95edy2+eO1DzcPkQAh1Y0x1b1oyzI/Pbf6\nMf/9JT8X27v+1uGlr71bCKlujKneRft82c999zXrzutW7z7E6yOkujGm+hft/fSqn/lfr/yu\nOsTLI6S6MaaecNFe+Nq7hZDqxpgiJDVCqhtjipDUCKlujKneRVvN7nleqOoQr4+Q6saY6l60\n1TjfZuGFr71bCKlujKn+E7Lix+u+HyIBQqobY+rmS4TGO0QChFQ3xlT3oi3KKP8i6YWvvVsI\nqW6Mqe5F2zXzP779QvUhEiCkujGm+p/a8WBDPUKqG2OKkNQIqW6MKZ6QVSOkujGmCEmNkOrG\nmOpftM3i9FndQvotG1752ruFkOrGmOpdtPn5yyO++UkNQqobY6p70dZl3v4r83V5G+sQCRBS\n3RhT/ZcI7Q+Xb8g11iESIKS6Maa+vkSIkGoRUt0YU92LNrvcI23LbKxDJEBIdWNM3fgaaSN+\nFfgLX3u3EFLdGFO9i7YY9F2EHjrE6yOkujGmvj+PVBbvYx7i5RFS3RhTvLJBjZDqxpgiJDVC\nqhtjipDUCKlujKn+80j8M4p6hFQ3xhQhqRFS3RhTNy7ax/zvnzNWeYhXRkh1Y0zdumh7XrRa\ngZDqxpi6edH41K4CIdWNMXXroq1LM/YhXhgh1Y0xdfvBhtVYh0iAkOrGmLoV0kz7nYtf+Nq7\nhZDqxpjiCVk1QqobY4qQ1AipboypH56QVT4p+8LX3i2EVDfGFCGpEVLdGFO9i7ZqNsf/fjQ5\n/2FfucM9YyR/hZDMdC/aqmzbX7dF+hohl2vPrgBCCqT/qd3XN+SHiMyuAEIKpHvRmus9Usrv\nImRXACEF0r1oy9J+jZT1uwjZFUBIgfQu2vzyJfVyvEMEZlcAIQXSv2jv7XcR2ox5iLjsCiCk\nQHhlw5VdAYQUCCFd2RVASIH0L1rqHzRmVwAhBfL9wYZD1h80ZlcAIQXSvWjJf9CYXQGEFEj/\nCdnUP2jMrgBCCqR70ZL/oLF7bgiaF7YS0uvpXrTkP2jMrgBCCuTG10i8RKjmr/iNuQch/aV3\n0XL/oDG7AggpkO/PI6X9QWN2BRBSILyy4cquAEIKpHvRFtpXfd86RGR2BRBSIF8f/h75EJHZ\nFUBIgXx9+HvkQ0RmVwAhBdK9aPvF/GPkQ0RmVwAhBdL/1E7+Pe2+HiIyuwIIKRBCurIrgJAC\n4eHvK7sCCCkQQrqyK4CQAvm8aCM99N09RHR2BRBSIP2QRsnJ5dqzK4CQAiGkK7sCCCkQQrqy\nK4CQAiGkK7sCCCkQQrqyK4CQAiGkK7sCCCmQ/yGN8mMvu4eIzq4AQgqEkK7sCiCkQJ5w0Vyu\nPbsCCCkQQrqyK4CQAiGkK7sCCCkQQrqyK4CQAiGkK7sCCCkQQrqyK4CQAiGkK7sCCCmQ6CGJ\nfv6DaM9YBdw1xu7nZ5gKH9LYBxg0xjCkUIcipMkOQUijjwm2sSlCGjLG72YZ61CENNkhCGn0\nMcE2NkVIQ8b43SxjHYqQJjsEIY0+JtjGpghpyBi/m2WsQxHSZIcgpNHHBNvYFCENGeN3s4x1\nKEKa7BCENPqYYBubIqQhY/xulrEORUiTHYKQRh8TbGNThDRkjN/NMtahCGmyQxDS6GOCbWyK\nkIaM8btZxjoUIU12CEIafUywjU0R0pAxfjfLWIcipMkOQUijjwm2sSlCGjLG72YZ61CENNkh\nCGn0McE2NkVIQ8b43SxjHYqQJjsEIY0+JtjGpghpyBi/m+Vdf0fzHc8IKfIhCGn0McE2NkVI\nQ8b43SxjHYqQJjsEIY0+JtjGpghpyBi/m2WsQxHSZIcgpNHHBNvYFCENGeN3s4x1KEKa7BCE\nNPqYYBubIqQhY/xulrEORUiTHYKQRh8TbGNTLxFSqGfm7cYE29jUS4TEGJNDEdJkh/C7IdiN\nCbaxKUJKPybYxqYIKf2YYBubIqT0Y4JtbIqQ0o8JtrEpQko/JtjGpggp/ZhgG5sipPRjgm1s\nipDSjwm2sSlCSj8m2MamCCn9mGAbmyKk9GOCbWyKkNKPCbaxKUJKPybYxqYIKf2YYBubIqT0\nY4JtbIqQ0o8JtrEpQko/JtjGpggp/Zhnbiz69hoBEVL6MYYbB0RI6ccYbhwQIaUfY7hxQISU\nfozhxgERUvoxhhsH9PjaH6tF+yDLYvkx1iHu/GC7G0KsMYYbB/To2vtZ5wHL+SiHuPuD7W4I\nscYYbhzQo2svS/O+bd/abZqyHOMQd3+w3Q0h1hjDjQN6dO2mbK9vb0szxiHu/mC7G0KsMYYb\nB/To2r0noH9/NpqQYo8x3Dgg7pHSjzHcOKCKr5E2u/YtvkYyH2O4cUAPrz3vPGo3249yiHs/\n2O6GEGuM4cYBPb72x7J9HqlZrHgeyXqM4cYBPWFtQoo9xnDjgEZaW/YPTGKdwZccY7hxQJVr\nr2elLDYjHiLWGXzJMYYbB/To2uf7mcsjDr8+aEdIwccYbhxQVUjLstwfDrtlWY9xiLs/2O6G\nEGuM4cYBVYXUlPZx732ZjXGIuz/Y7oYQa4zhxgFVhfT5OAIvEXIeY7hxQFUhvX2GxEuEjMcY\nbhzQ4yEtVutNeT++uV/yEiHnMYYbB/R4SNfniEppeImQ8RjDjQN6eO3tdr1eLNqHHJa/dkRI\nwccYbhzQE9YOEZLmW3zGuj0RUiBZQmJMhEMR0mSHiHUGX3KM4cYBEVL6MYYbB0RI6ccYbhwQ\nIaUfY7hxQISUfozhxgERUvoxhhsHREjpxxhuHBAhpR9juHFAhJR+jOHGARFS+jGGGwdESOnH\nGG4cECGlH2O4cUCElH6M4cYBEVL6MYYbB0RI6ccYbhwQIaUfY7hxQISUfozhxgERUvoxhhsH\nREjpxxhuHBAhpR9juHFAhJR+jOHGARFS+jGGGwdESOnHGG4cECGlH2O4cUCElH6M4cYBEVL6\nMYYbB0RI6ccYbhwQIaUfY7hxQISUfozhxgERUvoxhhsHREjpxxhuHBAhpR9juHFAhJR+jOHG\nARFS+jGGGwdESOnHGG4cECGlH2O4cUCElH6M4cYBEVL6MYYbB0RI6ccYbhwQIaUfY7hxQISU\nfozhxgFNGVK5R80BBv2VtGMMNw5o0pBqPnjY32FMiEMR0iiHSHtDiDXGcOOACCn9GMONAyKk\n9GMMNw6IkNKPMdw4IEJKP8Zw44AIKf0Yw40DIqT0Yww3DoiQ0o8x3DggQko/xnDjgAgp/RjD\njQMipPRjDDcOiJDSjzHcOCBCSj/GcOOACCn9GMONAyKk9GMMNw6IkNKPMdw4IEJKP8Zw44AI\nKf0Yw40DIqT0Yww3DoiQ0o8x3DggQko/xnDjgAgp/RjDjQMipPRjDDcOiJDSjzHcOCBCSj/G\ncOOACCn9GMONAyKk9GMMNw6IkNKPMdw4IEJKP8Zw44AIKf0Yw40DIqT0Yww3DoiQ0o8x3Dgg\nQko/xnDjgAgp/RjDjQMipPRjDDcOiJDSjzHcOCBCSj/GcOOACCn9GMONAyKk9GMMNw6IkNKP\nMdw4IEJKP8Zw44AIKf0Yw40DIqT0Yww3DoiQ0o8x3DggQko/xnDjgAgp/RjDjQMipPRjDDcO\niJDSjzHcOCBCSj/GcOOACCn9GMONAyKk9GMMNw6IkNKPMdw4IEJKPybaxne4Y8yzEVL6MX4b\nE9LwY/udQbsxfhsT0vBj+51BuzF+GxPS8GP7nUG7MX4bE9LwY/udQbsxfhsT0vBj+51BuzF+\nGxPS8GP7nUG7MX4bE9LwY/udQbsxfhsT0vBj+51BuzF+GxPS8GP7nUG7MX4bE9LwY/udQbsx\nfhsT0vBj+51BuzF+GxPS8GP7nUG7MX4bE9LwY/udQbsxfhsT0vBj+51BuzF+GxPS8GP7nUG7\nMX4bE9LwY/udQbsxfhsT0vBj+51BuzF+GxPS8GP7nUG7MX4bE9LwY/udQbsxfhsT0vBj+51B\nuzF+GxPS8GP7nUG7MX4bE9LwY/udQbsxfhsT0vBj+51BuzF+GxPS8GP7nUG7MX4bE9LwY/ud\nQbsxfhsT0vBj+51BuzF+GxPS8GP7nUG7MX4bE9LwY/udQbsxfhsT0vBj+51BuzF+GxPS8GP7\nnUG7MX4bE9LwY/udQbsxfhsT0vBj+51BuzF+GxPS8GP7nUG7MX4bE9LwY/udQbsxfhsT0vBj\n+51BuzF+GxPS8GP7nUG7MX4bE9LwY/udQbsxfhsT0vBj+51BuzF+GxPS8GP7nUG7MX4bE9Lw\nY/udQbsxfhsT0vBj+51BuzF+GxPS8GP7nUG7MX4bl3vccSglQko/xm9j1QVXIqT0Y/w2JqTh\nx4511b/kGL+NCWn4sWNd9S85xm9jQhp+7FhX/UuO8duYkIYfO9ZV/5Jj/DYmpOHHjnXVv+QY\nv40JafixY131LznGb2NCGn7sWFf9S47x25iQhh871lX/kmP8Nr5rzJNf/EBI6cf4bfzEMXd7\nfNjHatFmvVh+PHgIbgghxvht/Eoh7Wedu8j5Y4fghhBijN/GrxTSsjTv2/at3aYpy4cOwQ0h\nxBi/jV8ppKZsr29vS/PQIbghhBjjt/ErhdR7yOP74x93PThy1z8rAcby4G3/9o35wY8bcI8E\nvL6Kr5E2u/atP79GAl7fw3dv885d5GyvXAnwU/E80rJ9HqlZrP54Hgl4fU94ZQPw+ggJECAk\nQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRB4hZAm\n+mZOCO3ZN8InH28MdpfBbmE2Dne8MdhdBruF2Tjc8cZgdxnsFmbjcMcbg91lsFuYjcMdbwx2\nl8FuYTYOd7wx2F0Gu4XZONzxxmB3GewWZuNwxxuD3WWwW5iNwx1vDHaXwW5hNg53vDHYXQa7\nhdk43PHGYHcZ7BZm43DHG4PdZbBbmI3DHQ94SYQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEC\nhAQIEBIgQEiAACEBAoQECBASIEBIgIBrSPu3Ut623fcsm9Is91Pt86dvC0/zvd4H+ujtF/wq\nbvU2fuJ1HPxE/qhpr6HODXPevmM23UZ/+Lrw1iGkfdPdL/pVfNLb+JnXcewT+aNleTv9Z3F9\nx0dptodtUz4mXOo33xbedt4Oa9G9EUa/ilu9jZ95HZuG1JTTZxidK21ZNsf/vpfVZCv97tvC\n67Cr/vfe+7959Kv4pL/xM69j05DOSnN9c1F2h/j/m+8svC7rCRe5y67MuzdLg6v4y8bPvI6d\nQ1p2rqfL9Rf7a47uwouyeTt+6T7hNn+al133+jS4ir9s/MzrOPC18ofjvXjnKjI4y/2FF+ev\ng+fT7fOXVXk/eIX0deNnXsdxr5W/rBdN51Pg+Gf528Lvh8N+GfcTvPZzOKuQbmz8vOs47LVy\nj7f/V1H4s9x6+3pO93EfTZ41e7OQvm189pzrOOy1co/9/y/em+hnudVZ+CLswm/tY3Td9aJf\nxd83vnjKxlGvlfv8v4rODyntIj+kdPLtnIa9WZarz/dEv4q/b3z9g2cc/QnHGMH5aZnd/zvt\nVfu/o02J+jDYt4U/3+Fzs4x+FX/f+JnXsWlI7QsF9ov/X3JEf9r928LL0w1yf36SMy67Vzb0\nNn7mdWwa0uWla+0Dm+erbhb80eSvC+/P74j6v/eL3gMM0a/iVnfjZ17HriGdXok8O//v/XzV\n7duXJk+60u9uLTwL++D3RS+k8FfxybeNn3Qd24YEREJIgAAhAQKEBAgQEiBASIAAIQEChAQI\nEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBAS\nIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEievvyk7rA/HD0NToAnQgqGE/ASCGlqnICX\nQEhT4wRY+Chvp182ZXP65a18nMtZz0rT/tDu82+XZTXVgukRkoemPVFvZXn6pTTnchblZH64\nhLRs38QkCMnDqrwfTr00x/++H+94TuVsynx/2M9P91Kn39LRlAjJw+5UyUdZlO3hMC+7tpxF\n2R//ZF8WbUh0NClCMjE/VrMs2+OdUdvUKaTy6fTmvJSPqXfMjJBMbI4JNbPDbHb+LO9bSKUp\ns6l3zIyQXJTZR1ke75T2s9NndOd6/v9h+diW9ssoTIOQXCzLW9kc75je2kfCz18jbT7/8PTb\nVftIBKZBSC4+jp++tXdFbT6nct5Lsz0c1pcHGw6HGU8jTYeQbMzaL4Lm5/udtpx5+xVSs7v8\ndtuWhkkQko1V+2zs6vKc7OcrG8rb7vrb1enOCZMgJECAkAABQgIECAkQICRAgJAAAUICBAgJ\nECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAg\nJECAkAABQgIECAkQICRAgJAAAUICBP4BjmoiXq4TcEAAAAAASUVORK5CYII=", "text/plain": [ "Plot with title \"empiryczny\"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hist(log(gaw$age), main = \"empiryczny\", xlab = \"wiek\")" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAgAElEQVR4nO3diYKiuhZA0TCIlgP8/9+WTAo4Yk6Sk7DXe7fbaouhkd2MWqYB\nYM2EngEgBYQECCAkQAAhAQIICRBASIAAQgIEEBIggJAAAYQECCAkQAAhAQIICRBASIAAQgIE\nEBIggJAAAYQECCAkQAAhAQIICRBASIAAQgIEEBIggJAAAYQECCAkQAAhAQIICRBASIAAQgIE\nEBIggJAAAYQECCAkQAAhAQIICRBASIAAQgIEEBIggJAAAYTkmDHm7/bIelTzPzjuMmOy3fHx\nW58/YwZZeXw7Rzu7+dwkQnKsXW9vj6xHNf3yUoxh5Jf5N756xtxVr+folLFSrMcyc+y21kqH\ndMkmXcx6efnM5I/N6eUcWc/nJrHMHLuvzcIhtVud/XXEl3275Wm+eWYcwfFa2u7lHBHSL1hm\njnUhlcOj/o+Ou+vD8filzSxvt1nt04fc5NdNxSEzxal/+q9sY6geSzwNW5Xh4fGbZ24jOPeP\nns3RsMES+ttvB0vMsbaD+Y7UeABTTp4vugf9M5fqtu91+97HPbFq3GPsH5ffPHMfwTyk6RwR\n0m9YYo5dV8pzv4M1rJ7l7TBl3E6Z7sTe7Y+z+7OHa1z1LYfZ+n1d+c/j4/PthMb7Z6ZbpOzF\nHBHSb1hijrUr5XVNPYyr7fH626Fu6v2w12X6VsYHh3YLde5+u/5ZPju8mq3fNl/Mj5GezJHk\nAtgIlplj7WpZdxuAfgXddVE13WZmWJlvF3VOs98WI5EJ6ebcvJkj27/0BrHMHOtWy3172HKr\nodsANZfF18P6O//t+m1/VWE+h5Tdd8oen5kMMzrex/FkjuT++pvBMnOsXy2v+1IPq+ni66ch\n/eXjmt8s1vDpkdBpdnTz+MxkXjpFNW335RxhBZaZY/1q+XddoR///Z8c8D8P6a89Ytodlmer\nW8O5uXNx7M4W3M9WPHlmPi/Lr1/OEVZgmTk2rJbFuFkpXx2RPAspX+6D3cd76o9zyra02f7b\nm2eeh/RyjrACy8yxYbU8jyG9PEf2LKTJwM1yDS+7EXXjmW123jzzPKRnc1SL/f23gpAcG1fe\nnZltm1q76fNPQyq6vbT2bPVjSLM76kxVf/HM85CWc9QOXTVYh5AcG1feegzptt7uZs8/Dek0\nfGvWnRNfdHC/x7tVfvHMi5AWc9QmX4j83beEkBy7rbyH26PuzUKTe+1mD+a/ndujnN35Mp6W\nm4/7uMu7dx1VZnZL3ctnXoU0n6N215B3JK1FSCk4715tQl4/A1GEBAggJEAAIQECCAkQQEiA\nAEICBBASIICQAAGEBAggJEAAIQECCAkQQEiAAEICBBASIICQAAGEBAggJEAAIQECCAkQQEiA\nAEICBBASIICQAAGEBAggJEAAIQECCAkQQEiAAEICBBASIICQAAGEBAggJEAAIQECCAkQQEiA\nAEICBHgIyQCR+WEtlw8nwCQASYQECCAkQAAhAQIICRBASIAAQgIEEBIggJAAAYQECCAkQAAh\nAQIICRBASIAAQgIEEBIggJAAAYQECCAkYOLtm8bfPElIwE0Xyqta3j/5w8TWD6JwEsAjM/n1\nlyd/mJhThIQQzOL3758kJOCGkAABhARI4BgJEMBZO0AE15GAgAgJEEBIgABCAgQQEiCAkAAB\nhAQIICRAACEBAggJEEBIgABCAgQQEiCAkAABhIRte/u+iRWj8TKIwkkAzYc3660akZdBFE4C\naD68fXz9iFwPonASwKcPNPllTG4HUTgJgJAAEYQESOAYCRDAWTvgB+NVo/vVI64jASuN2x+x\n7dBk1F4GUTgJbNB4RCR2ZLQctetBFE4C27M8Rye5mhESNoOQAAGEBEjgGAkQwFk7QMTjdSSp\nEXsZROEkAEmEBAggJEAAIQECCAkQQEiAAELCNoif8F6M3ssgCieBTXFwCXYxAS+DKJwENsXB\nTUHPJuB6EIWTwJa4uE31+RTcDqJwEtgSQgIEEBIggWMkQABn7QBLZqiI60jAz5xvi4bJeBlE\n4SSwEc6PjqaTcT2IwklgG9yfr/t5/ISEeBASIICQAAkcIwECOGsHiHB8BWmYiJdBFE4CkERI\ngABCAgQQEiCAkAABhAQIICRAACEBAggJEEBIgABCAgQQEiCAkAABhAQIICRAACEBAryGdNqX\nplVWJ1eTAILwGFKdm7vCySSAQDyGVJns79w9uhwzU7mYBBCIx5Ayc749PpvMxSSAQDyGNPsI\nivefR0FIiAxbJECA32Ok46V7xDESUuPz9HcxOWuX104mAYTh9zpS1V1Hyso915GQFu5sAATo\nCclMuZkE4IrPkC47k+2b5pCb7O2pBrZIiI7PW4Sydltz2HOLENLj9fT3dTtUZWZXN3XF6W8k\nxesF2W5o05345oIsfPB2vO39FqHhL8YtQnDP0w8Z6yblZZBONgmpZosE9zz92MsfJ2J7jFTV\nw2P5SQATZvG7j2m5HaTDWTv4lWhIXEeCX6mGpGoS2IA0j5F0TQIbkOZZO12TQJqGezWn//mZ\nrpdBFE4CKerTuaXkaWvUTdnLIAongRSZ/v/XjLr/eVyTCAnp6DvqtkNjRb5WJUJCOgjJ/ySQ\nIELyPwmkiGMk75NAWszkbB1n7TxOAikZAprl5O8aUjcHXgZROAmkpNul6w+NAq07hIT4jQUF\nLImQED9CCjcJJISQwk0CKeEYKdgkkJLpWbtAc+BlEIWTQCLMXLDZ8DKIwkkgCfftUOAPjCck\nxMzcbgkKvNIQEiI2O1cXdK0hJESMkIJPAikgpOCTQBI4Rgo9CSSBs3ahJ4EEaLiANM6Kl0EU\nTgLRC3wvwxwhIVbjm8lVrC2EhEiNBekoiZAQKUJSMQnEjpBUTALR4xhJwyQQPc7aaZgEIqbi\nHUhzhITYKMyIkBCf/hOJh19Dz8yIkBCZsSBdJRESIkNIqiaBWBGSqkkgWhwjaZoEomSWQs/Q\niJAQD7UZERJiYsz9/8oQEqIxFqSxJEJCNAhJ4SQQH0JSOAlEiGMkfZNAhFSer+sREqKg9bT3\niJAQAd0RtQgJEejfCavn/bCPCAn6jQUpLomQoB8h/UjnskIohPQjncsKwXCM9BulCwuhcNbu\nN0oXFjx7eNuE1owICXpFE1GLkKAVIVlTvcjgR0T7dQ0hQS1Csqd5icETQrKneYnBl5g6IiSo\nRUjWVC8yuPZkp055RoQEdaLq54aQoAwhyYll6UFeZLt0I0KCLoQkKJKFBwcISVAkCw8uRNkR\nIUGT6M563xAS1Ig3I0KCIlEWNCAkaDEWFGVJhAQtCElcbEsREghJXGxLESI4RpIW3WKEBEKS\nFt1ihKVYz3rfEBLCizyiFiEhPEJyJNKFid+MBcVcEiEhOEJyJc5liR8RkitxLkv8imMkRyJd\nmPgRITkS6cLETxLIiJAQWgIRtQgJYU3OM4SeFRuEhKDGgmIviZAQFCG5FPMSxSqE5FLMSxTr\ncIzkUNSLFKtw1s6hqBcpvpbEFaQeISGUdCpqCAnhEJJz8S9XfDQWlEZJhIRACEl+LgJMAqER\nkvxcBJgEguMYybn4lyveMQ9Cz5E1QoJvCWZESPAvuYhahATPEtwcNYQE7wjp90EUTgKhENLv\ngyicBIJJsSNCgneE9PMgCieBMJLcr2sICV4l2VCHkOARIdkNonASCGAsKMGSbEM65E1zyU1+\nkpqhx0kgGYT0apBjuziydqmIlpTWMsaIkF4NUpi/5mzy5s8UYrPUEFKyOEZ6MUi7OM6m6h/I\nSWwhY0RILwZpF0dpjoSEt5a3BaWWkcCu3flosoZdO7yRfEWNxMkGY/btojqKzVJDSIkhpM+D\nHLL2CKnJ/4Tm58kkELnH/boEX18uyMI1QhIbROEk4A0hfTPIsezO3F2E5ufZJBC5DXRkHVLR\nLxeTiZaU4pLeMEL6OMjBFHW7XA5mJzZLDSGl4slOXZoZWYeUmboZfnKh1BwtJ4FYbSKgkcCd\nDYSEpwjp+0HyYYvU3rgqKO1lvhEb2acbyBwjHTNzEJulhpCSQEhrBimHZSR6qx0hpYCQVg3S\nXkcypewdQoSUhC11xJ0NcGBDp71HhARpG8zIKqT1C+q07w+pyurDJzykvtTTtq2CBh5DqvPJ\nd78/ObGRhZ+mrW2Leh537SqT/Z27R5dj/y4m8UlAAUJyN0gnM+fb43P7/nT5SUABQlo5yP0D\nyr5bXLNvef/921j2qdpiRz5DYou0EYTkbJDO9Rjp2L9riWOkdG1yv67xex2pmCzfvHYyCYS1\nxYR6Am+j6GRvd9UGp6q7jpSVe64jpYmQfhxkXFwX3o+EsaP77xtiEdJxti9s/X6kTe5ZJ4aQ\nfhpkeqfCNz8gqa7a/b/9dbDiw93i23oN0kFIvw6yZmldsut311m/kLlFKEnb3avweNZuZ8r6\n+svucm1qx+nvJBGS20H64Uw9/HLdy+OCbHo2fZRrG9I+/3rJdd+SmckXknOFwLZcUWMd0n7F\nwtu1twjt+/uE6vcHSVt8JWJHSDaDrPn0oLPJqnNTZteSjvn7n6e0xVcichs+YdfxeNau/dCu\nm730XCEsQrIapDRv75lb+tt1h1Tl/sNH7m/whYgdIVkNcsmKL67EWk0CceAYyWYQRwtvi69E\n7AjJZhBCwkbfybfA59rBEhG1CAmWCKklFdKptJ2Tj5OASmNBGy/JNqSKY6SNI6SOZUj3jt7e\nqWAzCehGSB3rW4T+msJcLoURvZy02ZcjRhwjtQRuEdpft0Zn2Z80tt3XIzqc+u4JhHRsb1zl\nGGmTyGhkfa/dX3MxeXMipE2aHB6FnpXALEM6tguw++DHndgsNYQUi7EgSrJ/h2z71c68/wgG\nu0lALUK64c4G/I6QbggJFjhGGhESLHDGbsTbKPAjTnxPERJ+QkZzMrt2p0L05m9C0o+Q5oSO\nkWquI23LWBAlDaRONrBrty2EtCAU0uH9Z3lLTAKaENKC2MmG95/4aDEJqMQx0pxQSPn3n1y8\ndhJQiZDmuCCL9QwZLRES1iKiJ+xCqvftWyjK9vMaSsmDJF4fzQjpCauQDrdDpMtB9NNPeH0U\nGwuipCmbkK4dVe1nnpwrk/GZDZtBSM9YhFTfP4Prj4/j2g5CesYipOr+tthS+C2yvDyacYz0\nhEVIuRl/XNjF7E0uNUfTSUAjQnrCIqT7UjyX3Gu3GWT0lEhIyy+s8QrpZcZPaQg9I7qI7No1\n3WfbCeJFUmssiJLmZE42zB4L4DVSi5Cekzn9fTTrfrr5t5OAOoT0nM0F2T9jqnPTXZCVvYxE\nSIpxjPSU1S1Cf9lw9iaT7YiQFOvO1nHKbsnyptVD2d60ehDdr2sISTHOfD/H2yiwApeQXiEk\nrHC/yy70nGhDSPjeWBAlPSAkfI+QXiIkfI+QXiIkrMAx0iuEhBU4a/cKIWEFMnrFOqRj2S7W\n8vLim3/DC6USNzW8ZhtSMew1Z6Il8UqpxG12r1mGdDBF3S7XAz/WJX3c+P2GZUiZqZvhnymp\nOVpOAloQ0huWIfUnQxtC2gJCesMypHzYIp15q/kGcIz0mswx0jEzoj/XhVdKJc7avWZ71q4c\nLiyIfmIxIWnEtdh3RK4jmfJPaHaeTgIK8Gl273FnA75ibvt1vDjPEBK+MRZESS9YhGTmAs8V\nnCKkDwgJ3yCkD9i1w1c4RnqPkPAVztq9Zx3SX3v6e8cHRKaNjD4ReRtFeyVJaoYeJ4HwuDno\nE8uQqv7TirlFKG3crvqR9dsozt3v3LSaNEL6SOBtFPMHIni5dCGkj6x37cYtkuhBEi+XMhwj\nfWJ7smHfHSOdMu7+ThpvoPjEetfOyd0NvF66cOr7I0LCJ2yOvsCdDfiEA6QvEBI+4JTdNwgJ\nHxDSN2xDqjIXB6K8YooQ0jesryPxfqTkcYz0BeuzdqL32D2bBELjrN0XpG4RksVLpgoXkT6z\n3rWrxWblxSQQmBl+SF/o+dDN+v1IhexPRnoyCYQ1/tjY0POhm21IR042JG58ZSnpLcuQ9py1\nSx0hfcX6jX2ctUscIX2Fs3b4gGOkb1jv2nHWLnWctfuG9Rv7ipPUrLyaBILirUhfkXs/ktgs\nNYSkB3c1fImQ8A732X2Jt1HgDe78/hYh4Q1C+pZUSCc+jitFhPQt6zf2cYyUNI6RviT2xj7R\nn0fBy6aCiw+ISpX1LUJ/TWEul8KIXk7iZVOAjNYQuEVof90anY3oR63ywilASGsIhHRsb1zl\nGCk1Y0GU9BXLkMrrrt3F5M2JkFJDSKtYhnRsF3H3U/t2YrPUEJIGhLSK9U2r7Vc7Yyqh+Xky\nCYTBMdIa3NmAFwhpDULCC2S0hk1IddU9POUmE37DOS9dcLx/Yh2bkLJuKfefI8RP7EsM9wat\nYxHSwRTt+8yz7NzUhfkLPFcQxd2qK1mEVJj2syFPZt/9yp0NSSGklSxC6hdx1d9lxwXZtBDS\nStYh5WbyhRRevOA4RlrHIqS83bW79Lc01CYTnClCCo+zdutYhFS1Jxt2/RuRDtwilBIuIa1m\nEVKd3c57H4w5C84UIQXFHQ0/sLogO95jZ7jXLiXmtlvH6/A1kVuETCn8cau8gAGNBVHSGtxr\nhwVC+gUhYYGQfkFIWOIY6QeEhCXO2v2AkDBHRj8hJEyR0Y8ICVMcH/2IkDDBGbtfERImCOlX\nhIQJQvoVIWGKY6QfERJuzEzouYkLIWFARjYICQMyskFI6I0FUdJPCAk9QrJCSOgRkhVCwoBj\nJBuEhAEh2SAktDj1bYmQwMZIgNeQTvuye63K6sOnDvFq+kVI1jyGVOeTl+v9D6/g1fSKE3b2\nPIZUmeyv/zzWyzF7/4mSvJheEZI9jyFlk481Pr//0H1eTK8IyZ7HkGYv0fvXixfTL46RrLFF\nAiEJ8HuMdLx0jzhGUmR2BYkF/yufp7+LyQuW104mgZWoSIjf60hVdx0pK/dcR1KCkIRwZ8Om\njQVRki09IfFvYwCEJCVISB9fMV5RTwhJCiFtG/sBQrxekP36VeMl9YWQhHgM6ZQRkior/mXD\nJz537erSFN0VWXbtFKAhUX6Pkf6M+WsISQVCEuX5ZMOlMGVNSAqMBVGSDO9n7fYmOxJSeIQk\ny//p73P++YXjhXWOkGSFuI60IyQFOEYSpecWIc+T2DDzIPQcJYCQtoaMnCCkrSEiJwhpY9gc\nuUFIG0NIbhDSxhCSG4S0NXTkBCFtDSE5QUgbwolvdwhpM2jIJULaDEJyiZC2gt06pwhpKwjJ\nKULaCkJyipA2g45cIqTNICSXCGkT2K9zjZA2gIbcI6QNICT3CCl9Y0GU5BAhpY+QPCCk9BGS\nB4S0ARwjuUdIG0BI7hFSypaXj8jIGUJKFxF5REjpIiSPCClZ7Nf5REjJIiSfCClZhOQTIaWL\njjwipBQ9bowIyTFCSg8ZBUBI6aGgAAgpOWyLQiCk5BBSCISUHEIKgZDSQ0cBEFJ6CCkAQkoJ\nZ72DIaR0kFBAhJQOQgqIkJLBXl1IhJQMQgqJkJJBSCERUjroKCBCSgchBURICXhy+Ygl6Bkh\nRY+CNCCk6BGSBoQUO3bqVCCk2BGSCoQUO0JSgZCiR0caEFL0CEkDQooYl4/0IKRokZAmhBQt\nQtKEkGLFXp0qhBQrQlKFkGJFSKoQUrToSBNCitCT096EFBghRYeMNCKk6JCQRoQUGzZGKhFS\nbAhJJUKKDSGpREjRoSONCCk6hKQRIcWD096KEVIsSEg1QooFIalGSJFgr043QooEIelGSJEg\nJN0IKRZ0pBohxYKQVCMk/bh+FAFC0o6CokBI2hFSFAhJOXbq4kBIyhFSHAhJOUKKAyFpR0dR\nICTtCCkKhKQYl4/iQUhqUVBMCEktQooJIWk1FkRJUSAkrQgpKoSkFSFFhZDU4hgpJoSkEee9\no0NI+pBRhAhJHxqKECGpw1mGGBGSOoQUI0JSh5BiREj6cIwUIULSh5AiREiacN47WoSkBxFF\njJD0IKSIEZIa7NfFjJDUIKSYEZIahBQzQtKDjiJGSHoQUsQISYOHvToyig0hhUdCCSCk8Agp\nAYQUHHt1KSCk4AgpBYQUHCGlgJDCo6MEEFJ4hJQAQgqK60epIKSASCgdhBQQIaWDkMJhry4h\nhBQOISWEkMIhpIQQUkB0lA5C8u/xnDchRY+QfCOjJBGSbzSUJELyjK1RmgjJM0JKEyF5Rkhp\nIiTf6ChJhOQbISWJkLx4cc6bjJJBSB7QT/q8hnTal91KVFYnV5NQiZDS5zGkOp+sR4WTSejE\nLt0GeAypMtnfuXt0OWamcjEJnQhpAzyGlJnz7fHZZC4moRMhbYDHkGbrzvsVKbG1jI7SxxbJ\nA0JKn99jpOOle5T8MdLznTkySpjP09/FZE3KayeTUIF4NsjvdaSqu46UlfukryMR0gZxZ4M4\n9ue2SE9IyaxzhLRFPkOqd8YUx2Ek6Z7+JqQt8nmLUNatTmU/knRD4hhpi7ye/j5cazpk3W12\nhISkeL0g2/12yfJL5CG93Hl7I/Q8w60AtwjVRRF1SJSDRx5Dys14ETYvCAlp8RjSweyGRxdT\nxBsSO3N4wufp7+q2ch0/rGeaV0JCwhNeL8iey/HRZUdISImeOxs8T+J3dIRHKYW0WHvvX46P\n+t/vvy7+k2Xx10d80glpyOPxy/GXRUUvMmqMkchKZDEgHgmFNB/y/uX4yDz8+ex/pul/vYfU\nLAKbffX7Xw4pSiYkM//9/uX8CTNpqJn+Z4Y/M829oOYxontqv/7dkCRCIiQIICRCgoBkQuIY\nCSElFJLfs3Yif08kI66Q3q/Ai2fvX46PzKKl5yl9w/YviNTEFNJimwPoEVVIviYPrBVRSObd\nk0BQhAQIICRAQEQhcYwEvaIKibN20CqmkD5dRwKCiSskQClCAgQQEiCAkAABhAQIICRAACEB\nAggJEEBIgABCAgQQEiCAkAABhAQIICRAACEBAggJEEBIgABCAgQoDQmIzA9ruXw4stzOoOO/\nPjMfavTe12tCinf0Uc983MtGwQTXinp5M/OhRk9IS1Evb2Y+1OgJaSnq5c3Mhxo9IS1FvbyZ\n+VCjJ6SlqJc3Mx9q9IS0FPXyZuZDjZ6QlqJe3sx8qNET0lLUy5uZDzV6QlqKenkz86FGT0hL\nUS9vZj7U6AkJiBEhAQIICRBASIAAQgIEEBIggJAAAYQECCAkQAAhAQIICRBASIAAQgIEEBIg\ngJAAAYQECFAfUr0zZnd2NvpDbrKqdjb66wQcLeEqi3TG+5G7XOyOV5nn1IeUdT8dwNViqbqx\nZ+5WyPMvP9ngC0U347mTcXdczXjH7WJ3u8q8oD2kyuzaX0o3Yz+bXd3+27tzM/rrBDI36+PJ\nZOd25CcXI2+5mvF+5E4Xu9tV5hXtIWWm/WfL1Yta9uN1ts4cTOFm3JU5Xn/9M3sXI28cznjH\n7WJ3u8q8oj2knsncjt7VUjCVo3GX5tK0/7K7+mfX2YzPJuJyCo5Xmcfp+Z3cbypzcDn62hSO\nxnx2tbYYx5tSZzM+4W6xN85XmUcRhPRnrv8+unTo9pMciTMkx+PuOFzszleZRxGEdCgzZ8cC\nrUvm8riUkF5wudhdrzJPRBDS1c7hhrrOHO5hENIrjhe701XmGa0hzX+4dC186DgdeyF/MWY6\nejfrYxZ9SA4W+4z0KvNJHCFJv6r3sV/y4iI66vnoXa2P/Vm7i8uLJU5DcrLY5zyf/9Ya0qi/\nKHBxdQ3/6PLMUcfN67nvDtSPLg+pXa6IThe741XmBe0hdZep69LRDu/FeUeO1kfndzY4Dcnt\nYne7yryiPaThxilHC35nzGIfUpyjcecuF0vH4UJxvNidrjKvqA+pvc05d/WPi4k2pLq7+9vJ\nqAcOF4rrxe5ylXlFf0hABAgJEEBIgABCAgQQEiCAkAABhAQIICRAACEBAggJEEBIgABCAgQQ\nEiCAkAABhAQIICRAACEBAggJEEBIgABCAgQQEiCAkAABhAQIICRAACEBAggJEEBIgABCAgQQ\nEiCAkAABhAQIICRAACEBAgjJKTPxy8/AO/YjeTn2yRd1lRuTV/W68Xr+2d/pYjk6ZRlSbvqR\nvBz7/fHfOJlvfubjfbyEJITl6N64sq5faT8MMXn62lF1aZpL9VVJ9wEJSQjL0T0PIdWZOfaP\njsZ83rsjJHEsR/cmIVUm23ePD7nJhk3H9WH/M7ivCeSmnDw5/OTvfvgqM8WlfXAszfADze8V\nHMztJ5xXZj8+0/06/fZL2U1/Mt7+G+9zcyyMKY6OFkTKCMm9e0jleBDTPTBF+6fF7WH3fDV5\nchpS923ZdWOz7w+FqmYaUmnO48NTP+Q44dm3Z+3D/UNI97k5fH+chRlCcu8eUlFfV9W83f+6\nPqqLdnfsz2Tn5pyZv+H52ZP3Hv7aP9y1PZj2W/+6Z57vod03NP2jybeP058+PZtg1gb5134L\n1iEk9+4hnYavyu44pm7348ru4ObYb0ba56dP3lf4sn2uNtlsnN+ENPv208PTi7kxht263xCS\ne/OTDf3qO54SH5+cPVw8uTxNfTnuixUhLb79cbyTCVbX3cvzucFqhOSecEjF+OzzY6TzfFP2\n8O1vQ2r27WFUdnG0JBJGSO49C2n55KKp5vUQO5MfjpdFSMNZu/Ol3ajMDq4evv1ZSNO5PVY5\nx0jrEZJ7jyGV90OR8RjpthmZPnkforgdI3V/tgxpuI5UmrI/U9A9c7pV8j6kcnlgZFgrVmOR\nufcYUneq7roZKRdn7bpvmzxpzGUY4tCeWav6s3an5rw8Rmqvw7Z3NuyH/bLcHNrzcObJt/d/\neGnuIU0mmPfn+NgirUZI7j2GNBy4dOv89DpS/333J3Nz2wbdriNVwwHNab7lON6OdNqLQN31\noHI4fTD/9vbX+3gXc/N3+2asQ0juPQmpvZfA7Ppj+kN2u7NhGOD25Cm/hdSdUOsG2F2zO033\nBXvD3d/Hors5Yp+ZXf/88tvbX+/jXc5Nd2cDHa1HSMk57kPPwRYREiCAkAABhAQIICRAAHNP\nPvkAAABdSURBVCEBAggJEEBIgABCAgQQEiCAkAABhAQIICRAACEBAggJEEBIgABCAgQQEiCA\nkAABhAQIICRAACEBAggJEEBIgABCAgQQEiCAkAABhAQIICRAACEBAggJEPAPQbdjlmt0fQgA\nAAAASUVORK5CYII=", "text/plain": [ "Plot with title \"Normal Q-Q Plot\"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "qqnorm(gaw$age)" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "\n", "\tShapiro-Wilk normality test\n", "\n", "data: gaw$age\n", "W = 0.94634, p-value < 2.2e-16\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shapiro.test(gaw$age)" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [], "source": [ "mean2 = function(x) {\n", " return(mean(x, na.rm = TRUE))\n", "}" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/html": [ "40.092939481268" ], "text/latex": [ "40.092939481268" ], "text/markdown": [ "40.092939481268" ], "text/plain": [ "[1] 40.09294" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mean2(gaw$age)" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Sex ethnicity avgAge\n", "1 F 1 48.00000\n", "2 M 1 32.20000\n", "3 F 3 49.00000\n", "4 M 3 48.50000\n", "5 F 4 37.87097\n", "6 M 4 36.09184\n", "7 F 5 40.75000\n", "8 M 5 30.33333\n", "9 F 6 41.79032\n", "10 M 6 39.73837\n", "11 F 7 38.86957\n", "12 M 7 38.65625\n", "13 F 8 42.83333\n", "14 M 8 27.50000\n" ] } ], "source": [ "\n", "a1 = aggregate(gaw$age, by = list(gaw$sex, gaw$ethnicity), FUN = 'mean2')\n", "colnames(a1) = c('Sex', 'ethnicity', 'avgAge')\n", "print(a1)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Group1 mean\n", "1 0 0.5196507\n", "2 1 41.4166667\n", "3 3 48.7500000\n", "4 4 36.9581152\n", "5 5 36.2857143\n", "6 6 40.8044693\n", "7 7 38.7820513\n", "8 8 35.1666667\n" ] } ], "source": [ "a2 = aggregate(gaw$age, by = list(gaw$ethnicity), FUN = 'mean')\n", "colnames(a2) = c('Group1', 'mean')\n", "print(a2)" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1] 1\n", "[1] 2\n", "[1] 3\n", "[1] \"-0.2\"\n", "[1] 5\n", "[1] 6\n", "[1] \"większe niż 0\"\n", "[1] \"większe niż 0\"\n", "[1] \"większe niż 0\"\n", "[1] \"większe niż 0\"\n", "[1] \"większe niż 0\"\n", "[1] \"większe niż 0\"\n", "[1] 13\n", "[1] 14\n", "[1] \"większe niż 0\"\n", "[1] \"większe niż 0\"\n", "[1] \"większe niż 0\"\n", "[1] \"większe niż 0\"\n", "[1] 19\n", "[1] \"większe niż 0\"\n" ] } ], "source": [ "for (i in 1:20) {\n", " k = i*runif(1, -1, 1)\n", " if (k < -0.2) {\n", " print(i)\n", " } else if (k >= -0.2 & k < 0.5) {\n", " print(\"-0.2\")\n", " } else { \n", " print(\"większe niż 0\")\n", " }\n", "}" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "\n", " F M \n", "788 826 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ " \n", " 1 3 4 5 6 7 8\n", " F 7 2 93 8 558 46 6\n", " M 5 2 98 6 516 32 6" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ ", , = 1\n", "\n", " \n", " 1 3 4 5 6 7 8\n", " F 2 2 34 1 167 22 3\n", " M 0 1 16 1 35 1 0\n", "\n", ", , = 2\n", "\n", " \n", " 1 3 4 5 6 7 8\n", " F 0 0 9 1 9 1 2\n", " M 0 0 3 0 4 0 0\n", "\n", ", , = 3\n", "\n", " \n", " 1 3 4 5 6 7 8\n", " F 3 0 19 3 224 11 0\n", " M 1 0 25 3 129 9 1\n", "\n", ", , = 5\n", "\n", " \n", " 1 3 4 5 6 7 8\n", " F 2 0 31 3 158 12 1\n", " M 4 1 54 2 348 22 5\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "table(gaw$sex)\n", "table(gaw$sex, gaw$ethnicity)\n", "table(gaw$sex, gaw$ethnicity, gaw$alcoholDependence)" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\n", "
IDMotherMaxDinkspacksDay
IDMother 1.0000000000.03815285 -0.006545066
MaxDinks 0.0381528511.00000000 0.276456076
packsDay-0.0065450660.27645608 1.000000000
\n" ], "text/latex": [ "\\begin{tabular}{r|lll}\n", " & IDMother & MaxDinks & packsDay\\\\\n", "\\hline\n", "\tIDMother & 1.000000000 & 0.03815285 & -0.006545066\\\\\n", "\tMaxDinks & 0.038152851 & 1.00000000 & 0.276456076\\\\\n", "\tpacksDay & -0.006545066 & 0.27645608 & 1.000000000\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| | IDMother | MaxDinks | packsDay |\n", "|---|---|---|---|\n", "| IDMother | 1.000000000 | 0.03815285 | -0.006545066 |\n", "| MaxDinks | 0.038152851 | 1.00000000 | 0.276456076 |\n", "| packsDay | -0.006545066 | 0.27645608 | 1.000000000 |\n", "\n" ], "text/plain": [ " IDMother MaxDinks packsDay \n", "IDMother 1.000000000 0.03815285 -0.006545066\n", "MaxDinks 0.038152851 1.00000000 0.276456076\n", "packsDay -0.006545066 0.27645608 1.000000000" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cor(gaw[,c(4,10,11)], use = \"complete.obs\")\n" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "\tPearson's product-moment correlation\n", "\n", "data: gaw$alcoholDependence and gaw$packsDay\n", "t = 7.7408, df = 1379, p-value = 1.899e-14\n", "alternative hypothesis: true correlation is not equal to 0\n", "95 percent confidence interval:\n", " 0.1529622 0.2540801\n", "sample estimates:\n", " cor \n", "0.2040654 \n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cor.test(gaw$alcoholDependence, gaw$packsDay, use = \"complete.obs\")" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "List of 9\n", " $ statistic : Named num -6.25\n", " ..- attr(*, \"names\")= chr \"t\"\n", " $ parameter : Named int 1386\n", " ..- attr(*, \"names\")= chr \"df\"\n", " $ p.value : num 5.35e-10\n", " $ estimate : Named num -0.166\n", " ..- attr(*, \"names\")= chr \"cor\"\n", " $ null.value : Named num 0\n", " ..- attr(*, \"names\")= chr \"correlation\"\n", " $ alternative: chr \"two.sided\"\n", " $ method : chr \"Pearson's product-moment correlation\"\n", " $ data.name : chr \"gaw$age and gaw$MaxDinks\"\n", " $ conf.int : num [1:2] -0.216 -0.114\n", " ..- attr(*, \"conf.level\")= num 0.95\n", " - attr(*, \"class\")= chr \"htest\"\n" ] }, { "data": { "text/html": [ "5.35499046127328e-10" ], "text/latex": [ "5.35499046127328e-10" ], "text/markdown": [ "5.35499046127328e-10" ], "text/plain": [ "[1] 5.35499e-10" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "str(corA)\n", "corA$p.value" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "A=matrix(0,3,3)\n", "vec = c(4,10,11)\n", "for (i in 1:3) {\n", " for (j in 1:3) {\n", " A[i,j] = cor.test(gaw[,vec[i]], gaw[,vec[j]], use = \"complete.obs\")$p.value\n", " }\n", "}" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [], "source": [ "A = as.data.frame(A)\n", "colnames(A) = colnames(gaw[,vec])\n", "rownames(A) = colnames(gaw[,vec])" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\n", "
IDMotherMaxDinkspacksDay
IDMother0.000000e+004.917381e-191.824893e-15
MaxDinks4.917381e-190.000000e+001.474031e-16
packsDay1.824893e-151.474031e-160.000000e+00
\n" ], "text/latex": [ "\\begin{tabular}{r|lll}\n", " & IDMother & MaxDinks & packsDay\\\\\n", "\\hline\n", "\tIDMother & 0.000000e+00 & 4.917381e-19 & 1.824893e-15\\\\\n", "\tMaxDinks & 4.917381e-19 & 0.000000e+00 & 1.474031e-16\\\\\n", "\tpacksDay & 1.824893e-15 & 1.474031e-16 & 0.000000e+00\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| | IDMother | MaxDinks | packsDay |\n", "|---|---|---|---|\n", "| IDMother | 0.000000e+00 | 4.917381e-19 | 1.824893e-15 |\n", "| MaxDinks | 4.917381e-19 | 0.000000e+00 | 1.474031e-16 |\n", "| packsDay | 1.824893e-15 | 1.474031e-16 | 0.000000e+00 |\n", "\n" ], "text/plain": [ " IDMother MaxDinks packsDay \n", "IDMother 0.000000e+00 4.917381e-19 1.824893e-15\n", "MaxDinks 4.917381e-19 0.000000e+00 1.474031e-16\n", "packsDay 1.824893e-15 1.474031e-16 0.000000e+00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "A" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Regresja liniowa" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$y = \\mu + X\\cdot\\beta +\\epsilon$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\epsilon\\sim\\mathcal{N}(0,\\sigma^2)$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$y\\sim\\mathcal{N}(\\mu + \\beta\\cdot X,\\sigma^2)$$" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "\n", "Call:\n", "lm(formula = MaxDinks ~ packsDay, data = gaw)\n", "\n", "Coefficients:\n", "(Intercept) packsDay \n", " 15.1054 0.1533 \n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model = lm(MaxDinks~packsDay, data = gaw)\n", "model" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "18.1714" ], "text/latex": [ "18.1714" ], "text/markdown": [ "18.1714" ], "text/plain": [ "[1] 18.1714" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "15.1054+20*0.1533" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "\n", "Call:\n", "lm(formula = MaxDinks ~ packsDay, data = gaw)\n", "\n", "Residuals:\n", " Min 1Q Median 3Q Max \n", "-28.358 -10.409 -4.792 6.441 80.895 \n", "\n", "Coefficients:\n", " Estimate Std. Error t value Pr(>|t|) \n", "(Intercept) 15.10537 0.50507 29.908 <2e-16 ***\n", "packsDay 0.15333 0.01833 8.363 <2e-16 ***\n", "---\n", "Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n", "\n", "Residual standard error: 15.67 on 1379 degrees of freedom\n", " (233 observations deleted due to missingness)\n", "Multiple R-squared: 0.04827,\tAdjusted R-squared: 0.04758 \n", "F-statistic: 69.95 on 1 and 1379 DF, p-value: < 2.2e-16\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "summary(model)" ] }, { "cell_type": "code", "execution_count": 91, "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAM1BMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD///89ODILAAAACXBIWXMAABJ0\nAAASdAHeZh94AAAgAElEQVR4nO2diXajOBAA5STjZDJJVv//tRsfoFtcDaih6u0sGHSZUBbd\n4MRYAFiM2XsAAEcAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABE\nAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQA\nARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAA\nkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJ\nQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAE\nQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABE\nAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhBgA5EMgDJm\nnOXy4uzQBYAkiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAA\niAQgACIBCIBIAAIgEoAAiAQggCqRyt/o9fYUvvc79G3gbv+8bw0vqQhHQJNI5S/He3sKX6Ef\n+mJ9t3/+F/DnVoRDoEik3pTanufJHJ/S5brR/oFy5RHPrQjHQJVI/qKwxxkxsm60f6BcecRz\nK8Ix0CNSd46m56q3x0RGDNbN75/sw+yKcBD0iMSMBA2jSiRiJGgVRSKRtYN20SQS95GgWVSJ\nBNAqiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIB\nCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBI4+G3e0MR\nRBoNf28CyiDSWPgLSFABkcbC3+SDCog0Ev5KLNRApLEwI0EFRBoLMRJUQKTRkLWDMog0HjSC\nIogEIAAiAQiASAACaBOJOAWaRJlIZM6gTXSJxL0caBRtIvkLgGZQJRLPu0GrqBKJGQlaRZtI\nS2Ik0hSwGrpEWpS1I+MH66FMpAWzChk/WBFtIi1ok/gK1uM0IpHxgzU5jUjMSLAmZxKJGAlW\n4zwikbWDFTmRSNxHgvU4k0gAq4FIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQggH6RGr/N2vjw\nQAj1IjX+4E/jwwMptIvU+KOojQ8PxNAvkr9ojsaHB2IoF6nxr+s1PjyQQ7lIrX/kNz48EEO/\nSE0HIY0PD8TQLlLrabHGhwdSqBep9Rs1jQ8PhNAvEkADIBKAAIgEIAAiAQiASAACIBKAAIgE\nIAAiAQiASAACbCrSv/e3+wMzb9d/a3UBsAsbivTzYhyvq3QBsBMbinQ1l79f97Xvz4u5rtEF\nwE5sKNLFfPXrX+ayRhcAO7GhSMFT0PVHohEJlMGMBCDAtjHS5/d9jRgJjsaW6e9XL2v38rNK\nFwD7sO19pOv9PtLl7Z37SHAseLIBQIB2RDI+63QBsBZbivT9x1zerf14MZdqqoEZCdSx5SNC\nl9tc8/HOI0JwPDZNf//OQ9eL+fNjf66kv+FQbHpD9l7b3BPf3JCFQ7H5I0Kjfhs2IoEydpiR\nbv//YUaCQ7FDjHT9ea7LdwGwE2TtHh1y7woWwX2ke3/cBoZltPNkw8ZdBN3xV4xgIYhk+bt6\nsBxEsvylV1gOIllmJFgOItk1YiRSF2cDke79CWftyAKeDkR6dCh62pMFPB+ItALEXOcDkeQh\nC3hCEGkFmJHOByKtADHS+UCkNSBrdzoQaRXQ6GwgEoAAiAQgACIBCHA8kRaGJ0Q3MIfDibQw\nYUa+DWZxNJEW3sLhDhDM43gi+Yutq8NpOZhICx9z4yk5mMnBRGJGgn04nkjESLADRxOJrB3s\nwuFE4j4S7MHxRALYAUQCEACRAARAJAABEAlAAEQCEACRAARAJAABEAlAgCOLVHhIof7swsCT\nDWs9+MADFco5sEiFx+bqT9MNPGu31qN4POKnneOKVHiQu/5898DT32s9HM5D5+o5skj+Ymjz\nqL2rfV2Jr0Gp57AiFb7sWv8O7MA3ZNf6Ai1fzNXPYUViRoItOaRI97idGAk25IgimYDC3nrd\ngaYXDW/LdmErDihS//HOfSTYjEOK5C8AtuB4IpECgx04nkjMSLADhxRpbApss8CECOjwHFCk\n0SmwzVJl5OSOzxFFGjkBbHbzhrtEJ+CQIo3sZKtYiqDtBJxXpM2ye6QRz8B5RWJGAkFOLRIx\nEkhxYpHI2oEcZxaJ+0ggxqlFApACkQAEQCQAAc4hkotRiFZgFU4hksuakT+DdTiDSO4+Dnd0\nYCXOIVK34BkDWIkTiJSGR4gE0pxAJGYkWJ9ziESMBCtzBpHI2sHqnEIk7iPB2pxDJICVQSQA\nARAJQICDiLRh6EOUBRmOIdKGyTjyfpDjECJteHuIO1GQ5SAi+YtV4dkIyHIEkTZ8hI6n9SDP\nEURiRoLdOYhIxEiwL4cQiawd7M0xROI+EuzMQUQC2BdEAhAAkQAEUCXS6cKT071hvWgS6XQJ\ns9O9YcUoEul0t3BO94Y1o0okf3ECTveGNaNHpNM95na6N6waPSKd7wP6dG9YM6pEOlnIcLo3\nrBlFIp0viXW6N6wYTSKd77bK6d6wXlSJBNAqiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIg\nEoAAm4r07/3t/szL2/XfWl0A7MKGIv28GMfrKl0A7MSGIl3N5e/Xfe3782Kua3QBsBMbinQx\nX/36l7ms0QXATmwoUvAgc/2pZkQCZTAjAQiwbYz0+X1fE4mRvO/qDHxtZ9K3eoLCAt8HUvGV\nolmDVPHONmPL9Perl7V7+VnYhfft0YEvkk76nmlQWOAbqiq+5DprkCre2XZsex/per+PdHl7\nX3wfyft9BgO/2mDSbz4ICgv8zgQVv3Zh1iBVvLMN0fpkg/cbdgZ+2c6k38UTFBb4LT4qfhHQ\nrEGqeGcb0o5Ixme4cL8c+PVvk347XFBY4PfKqfjVdLMGqeKdbcmWIv1cb6m69xdjXv8u7YIZ\nSQ5mJAE2FOn78nvUfy4yjwgRI8lBjCTAhiL9MW8/v//78/3r1J/F6W+ydnKQtVvOhiIZ8/P8\n3+9V3vIbst5PceAHOunnHRQWOFNUnGyzBqninW3GpiLZ2+MN3gvxLgB2YtNLuy9r3x/PCf3U\ngyREAmVsKNKXuVy/7Nvl16TPF/O5RhcAO7Fl+vvz4m4UvS/rgutzaIttb8j+/XP/luzb+/ey\nLsgYQWO082TDhC64hwGtoVQkfwGwPxpF4jkvaA6NIjEjQXMoFWlujFRJUZC9gAWoFGl21q5S\nj0QgLEGnSDOnj8pMRiIQFqFUpJnNlmMrwi5YxJlEqmT7SATCMs4kEjMSrIYqkQS+ZfdYTNoF\nMIwmkZYn1sjawUooEkli0uA+EqyDKpH8BUBL6BGJxBo0jB6RmJGgYVSJdA9jEAkaRJFIJNag\nXRSJxIwE7aJKJH8B0BJ6RCJrBw2jRyRmJGgYVSIte7KhmURFfSDNDBOmoEikhVm7ZnJ+9YE0\nM0yYhCaRFn1YN/N4d30gzQwTpqFKpEVNthJh1QfSzDBhGmcRqZmcX30gzQwTJnIWkdr5qGdG\nOiQnEqmR4IMY6ZCcRqR20mFk7Y7IeURq5wYN95EOyAKRTMjOowLYE0QCEOBEl3YA66FKJLGJ\njzgEhFks0t/X35Py7a/QcLJd9FulriHJjIE0S0V6fZ6Ur1IDSrvoN0rdYuFeDYizUKQPc/n8\nXXxezIfUiOIu3Eapm/48PQDiLBTpxXzdl1/mRWY8aRf9NqnH0HieDeRZKFJ/Mm6Q/mZGgnYR\nm5EuMuNJu3AbV4+RyEDAXBTFSKtn7UjmwWwUZe3Wvo9EMg/ms/w+0ttm95FWhtAJ5qPqyYZ1\n+ySZB/NBJNcpMxLMRpVIz9Bm8HnzsMBjzfQhkNdKEC0pj5HIk6xO7RAvFenjZbuvUZiEQu2g\nQFghbSM0Tu3ZqHrwOqifdDPa89bfh07qedTvIw2Y1Ptyn116m1xd2+2OJyHFZ6Ly6VQD9UO8\nUCTh+0e5LtzGLobxppZSOWP8RSiSDa7zvJY1Q4C3OgO//mlGg2nj0lSetQsmlVI5988JlFma\nw4hEynF1Bg7xQpGu5md6A9O6cBuZkcowI63OqjOSfXv9N72FaV30G1ePkRRznHfSLKvFSMYM\nntNz2Sdrp5rjvJNmqZ90M9oL291OpJXvIynnOO+kWWqHeOml3TpwRoAyEAlAgMUibfhbhNJr\nOnd5ZrxLTa9cOBln6ibTtX8JWBxeYd/Yq6vCe5hwdZYrybXdniwVacvvIyUBmRlJWD9XN+6j\nGliW9tXqFMsVRzu6hYm9wyosFGnb3yLkneXPDdafWWzggF/OuuLJjSWvRJAmD7ZH48juq9Up\nlnODd29koH6+p7G9wzosFGnD3yLU3RSKBfGU8EVKyoWL3Db/deXmW2nf2HuimXFMFintaWzv\nsA4LRYrPQCEK5+/zfLP+GecmpGA68vLcoTrWP1tjYUrLaBzZfbU6xXLeezAmGNrYFib2Dish\nNiNt8VuEmJHKPTEj7YvaGKmfcIiRJvUO67BQpN2ydmYKYf2kMeOdfVH7tXGM3l4tVxzt6BYm\n9g6rsFSkTX+LkDvVjD9zGG/hW+A+5b368Yv45DNB0+VxTNleLecNdLwIuZJotCeLRVqFsfE2\nZw40wkKR3ruVnzeBwWS7yO4nRwVtsVCkLjZ6lz2lmZFAGQtFut5N+nsx5r1UfA4jRCK2hpZY\nGiP9mvTvxZiXL6kBpV3kSyAStMTiZMP1djqLTkdJF9kSXbJLuGeAWSzP2l3NRXY6SrvIlSBI\ngpYQSH+/GvHffzI22YBI0AgLRJp+Q15wVMxI0Az/3ZhebVeRvAcPHovMvtoWAFn+ezK95p5P\nNjhpU33HbAEQxJNI1yNC/jyUeUiu31faAiBGOBXpipGmfU2IOApWIr2eUyVSLVeX7iOzB2vw\nXzYq0nZp5y+G9jEjgTTF1IIqkfov7eS+Y+R9j8hE0+WIDhdMqavlM0iUtEU1Pycl0r8NvkaR\nc8N7aYoM97fg6nS11CA5x4bIX895LH9odbMYqZ9prB//eIk5N5B4dhrqbkF6b0ndfRqGqYy5\nVbT4axQdn9MbGteF2+glvaNEQpxhCE/CESKNKyddd5+GYQpj77cuFOli/tpX8/0t/LxdMZlg\nwl/+liTmgt+3YEaei0vSe6ulBsk5NsCEpxYWinT7Mb//zkZfsr9GiBmJGWlvJj76IyDS5+13\n2rUQI7kNJudTpTtipBkcOBMymFpIWSjS2++l3bd5sf+2uCE7kLVLC5G1W5HGhzefeU+hLhTp\n83Yk778k8s/0hsZ14W82Jvnlb8kPs8vU+VeCwx0uOCVWO52aPk+bnzBnsemj3EGV99urP8Zc\np7cztgtokeOFcDOu5zyWirQOx/npHJWjJRUXSXQDkWAWB5qRFkt0Q5VIhXhosJg0TQcvG3GU\nGEnEIqtLpFKGbqiY+OiOmq+axAGOgpRENxSJVLhnFH8orv5ReZTP4qXo1mhZaiFFlUj+Ireh\nslWQA0UHZ0VYoht6RCo8Vxef0aunk46WrzobK0h0Q49IzEiwmJUsshuL9O/97R6gvl0HnhXX\nHSPpDh4Oy3oS3dhQpJ8X7/G3+sPiqrN2B0hnHQ7p1ELKhiJdzeXv49ftf39e6s8Uab6PRFKv\nNVaX6MaGIl2M+6sVX+ayRhctQAjVEptIdGNDkaKHttfoogFI6jXD+tdzHsxI0jAjNcGWEt3Y\nNkb6/L6vicVIwZ7CXrc5KpSvMRT/mGA1n+voWy82VCEc75wWTs/WEt3YMv396mXtXn6md1GX\npbDXbY4K5WtUU2652mnpyq4RJOOd3MLJ2cMiu/V9pOv9PtLl7V3kPlKwx3RTRKlSVKhfjb9v\nW+gj3Nmf6rnSgW/1N1rpY24LZ2YniW5ofrIh2GOMzYvULaJC3sf+qD7Cnf20VCo9N1IKxzun\nhbOyaWohpR2Rhq6Iyukw50bmMQfXeFDIv0Qb00e4M6xbULvYUIU0PEKkMewr0Y1dRBo8OZiR\nmJFGs79EN1SJNC9Ges5x5RjJc0kkRhpsqAIx0jTasMhuKpIJmd5F7bKv2KzbHhXKD6c6uFLt\naYOt4+rNbeE0NCPRjQ1F+ndZKFJ8HRbtye+NJ6HEmeiDvzq0qHa19FwJXD00KrNzaiFly0u7\nnzfzer8jO+/Sbh5DoQahiD5ak+jGtjHSX2P+2k1FGkp+kRxTRosS3dg42fD9at5+mJFgFs1d\nz3lsnrV7N5fPuSLNCRriGGjqfmiEhiW6sX36++tlWIepWbtqWwO1SI61T+MS3djjPtIf6ftI\nA40NpQjRqGkUWGR3uiE7rwuimfOhQ6IbekQiv3YyWk4tpOgRiRnpTKiS6IYqke7RDCIdHXUS\n3VAkEvm1E6Dres5DkUjMSEdHq0Q3VInkL+BYaJbohh6RyNodF+0WWU0iMSMdkwNIdEOVSM8Y\nKflGUVDELxt/ey//fai+WeOaqKY1XBP9WvJNpWLFkYegUPpY2Ra1qYUURSIFVkSvgwJVf1KV\nRhQpjyMtXqlZa3Rc6WkttM1xJLqhSCT/dO1+b0IvzrOAV86facK1/pXta/XNuiZcg+k4bN9G\ndlQ2fwFa2VXoJi49rYWGOZZEN1SJZL1TvP/ni/Qs52vR/ded8skVYnRB1zXhLTLj8Fv1O6xG\nctOCvFzpY4SJx7PIahKpO1X9pf/PS+sFU5M3E3Vnfb+0nkeeSJFP6TiC8KjzyY3OZs/1aWnH\nXOlpLTTJISW6oUckZiTtM9KBUgspqkTy4x4bypFMRG4SStbcprDZQ8RIJj/o3TmyRDcUiRSb\n4L+2xRdVcs2mBQbGERWv1Kw1Oq70YAvTutiIo0t0Q5NI/nRkrWeSH+Okk1L5pPdMipuono6u\niWAE/igrb2D8UciUHmjBHZtWOPT1nIcqkZ47g9jmuR5GD0OxhO5Yo0Jjb+wkEt3QJ5KfunLr\nQT5rKLt1gOxXnpbe2IkkuqFPJGakCq28sZNZZJWKFMRB/fpjJSwy1EStk8hRFbQQI51PohsK\nRcqlEuJ0Vfiq2MTw/qGCrbHzeM+SWkjRKJJ/trjTJjx/hs6m+v7CRKeBHTU6rUQ3VIp0L7Jm\nNFAIvaDIqSW6oVWkVfNThWQgFDi9RVavSMxIjYBED1SJ5F//L49e6k8gdCWaiJEazXecN7WQ\nokmkaYm5wT5q9dvK2jUxiBgkClAkUjw7LDu3Buaalu4jNTIteiBRgiqR/MXiLvREP20Nleu5\nLHpEks2gKcrHtTRUJCqhRyRmpJ2HikQ1VIl0j1eeD6sOPdAw4iGgx0JoyCvSwlCxaABFInlu\nmEJWLS1RPvuaTIXl2XmoSDQCRSK5GSmQ5bGrK/F85ZctdqJEI7vnUEktjESVSN0ivl+afg3J\n9L9dSI0sDYJE49EjUhD89Gv+Pr9EF0oh0kyQaBp6RGJG2gyu56ajSqQgRvKTCbNiJFVR0nYg\n0SwUiZTNyc3P2u2eDGsQJJqNIpHcLOOu6mIV/LBpyJJwNgMsWoIqkbyFwN3+Rh4YaAIkWooe\nkYIMncDzZy09wrYrpBYk0CMSM9IaIJEQqkSKEwz+/zMZCJOt2G1xz0ckveRfpKMZv3lymfFM\na80vjUSCKBIpY4rvR35rrlrGrLiPzIvsWEZunlxmPNNac6WxSBZFIuU9MdEck5TISuRtjvt4\nLJIXyVhyuyo1JpUZz7TWnqWRSB5lItlIB1+kgmqhYkHi3GYu7LxFJYgq7BoTdsmGZtNa+y1G\namEd9IjkC+FEcj7lL/26auHS9s88hGfg2MxgYdeYRKBssnBaa6aT6NT5lXXQIxIz0rLWvJno\n3InKdVAmUqLJohjJ5nJ21jqRjhIj9ddzon2DhyKR1sna5fvIvKiUG9w8ucx4hlvzgyLZvsGh\nSaRQCdvNKkVhTK5aOH/l+8i/qJQb3Dy5zHiqrSWZBTRaCVUizW1NNCrRA/m5DTmBSLJ5MiUg\n0cacQKTTzUjcKtoBVSL1F/jTrvT7wGhyTYUg0T5oEqnPFkzNPYXpieOqhET7oUgkPzn3WBnf\nnqs7saYesGhXVIn0XMyPeY4aLSHR7ugRybtLGm6Y0OwR83ekFppAj0jMSBmQqBVUidQ/kPBM\nOfh7xrU7HCPpyUUgUUsoEil5BijaPqrhoaJK0npcz7WGIpEqj9I9FqNarluiIq2HRA2iSiTb\nJ79DkfzFwo5bD6KQqFH0iOR75IskmYprPK2HRe2iR6STz0hI1DaqRHLRUSlGikOgqYmDNmMk\nUgvto0ikONsQbw/W4j2je24ua4dEKlAkkj8Z5eedeD6ZM780pRESqUGVSP5iTIl2I54RcD2n\nCj0iDWfUSnk8hSIhkTb0iHSaGQmJNKJKpMKjDZn93hYbvg5XJgwpn4WIto1quFaoOYuaihkb\nRpFIGZPiczjaE73u12ak5gr2RttGNVws1JxEtsUsZqMoEsm4CSZzWge7rO/LU6Il37B1fdtY\nXr+lUQ3nCzWaWphxqE6KKpFsoEcsUm+LE8n2lyZOgb7WNJFcB+Fmv6VRDWcKtSnRDZ1R5h7o\nESn0KL2osr5Axri/NhE98mCi037UeKLWvE695aiG40LtSmRV5z23Ro9IR5yRmrboBjPSWFSJ\nNICtvMoX6bSKnUyFjRvod6eTXdyFa9Ir5P5WUTkvFjScrKWvBhoZSXwoHotJTUzvdJcmRbtW\nJNKwSUtZ0k2xqre9b99PLQT7Mm+3sJY0WziSw0WqFSbXn11p8yZlu1Yk0tCZHJ69A6X7Gta7\n+utO+r4zG5aNW+8W1rsGSmvFn+vh9Vy4L3y7zx25tWrVXCNjj3xcoXuDE5jc6S5NCnd9NJFs\nsCj81SSvxrPhYNF3FuQt3PZot3W1rB+r+SJ1u9KgqBiFuB25tWrVEa2LVVipjfWbFO5aj0gD\nHnmf/k4gNy93+327vMnn2YFNPPKSDOHkFSzdcfY88pc3sreK/Ho2vyO3Vq06onWxCiu1sX6T\n0l3rEUn3jFTMzzEj7dSkcNdHEyn0aUQN68th+0XsYbDd2x3qZ7tJLOihkyj7s4jrZ3bk1opV\nn29mqPUSkyus1Mb6TQp3rUikMW4sY0k3pVE6iwo/irh+ZkdurVC1MJrRR356hZXaWL9J2a4V\niZScuum5XHpRqGO7D/D05EuqR9ttvDk3Tnc9V/tJFPe5Hbm1bFWTfHxOPv0mV1ipjfWbFO1a\nlUj+4rGaPZObYJ+nUHeMJU6OHpHcZ7LbEiQAGmKvR3/SYwQboUckLTPSrs/PMSPthSqRnsFJ\nMBW533HnRTOj+ijEHYvY+ynUNEaCbVAkUh/fh3F+tHWsFUkjiwe9t0R3pN4MTESRSJ4wj5du\n23NWeb4Ycx65RkQ+xNv5gisa7YMqkZ4LE750W43/DMJAD33t5WFFMxLBfugRKc5IhRNJJ9BI\nkXI3aGaNFIngjh6R2puR2rmeg93ZVKR/72/3MObt+m9GF1E2IfRqRozkUoBec6NBIvDZUKSf\nF0+F1xldmJBw67SsnV90eqILiSBmQ5Gu5vL36772/Xkx18ldhMKE293+UUaE0k3TCIsgw4Yi\nXcxXv/5lLpO7cL7MHEDQ1KxHIpAICmwoUnDS1s/gfNYuTDYswJ/DRlcitQAVmJFGgURQZ9sY\n6fP7vrYkRhpLpoJ7EKKwI6jUa+Z9NS8qVx9jft/Uo5ZppF9U2hPoCqawZfr71TvLXn6mdzHN\nJBHc9Vx+f32E+X1zD1/pEFTKLekKJrHtfaTr/T7S5e194X2k4Dwa2uxuL/nLtKiNK/nXc34L\nxZtPYbdxUGgGJpER9N0a/0Wl3PyuYBqqnmxIrLHpJm9XkDDvT2Wb7PVu5Pab3fVc17m1Ybl+\nqz9Ca/tBZUSyy0XyFlWRcsODFWlHpFCD/P7c3deRxPeb4qb8EXhTkX9KdgK5EYYD7eTx/wWj\ntwtFCvKWrsVSOUTakC1F+vljzOvns5HJ6e+NZiQvtWBsdE765XLvghnpvGwo0s/lfiK+PRqZ\nJ1LemPrmMEYqF3V/IOI/4/3Ou77zaC7LvIuw2wUxUqmU8RWqikSMtDEbinQ1H782fVzuj9nN\nEGnG9dwU/KnIo955fYT5fcNHqlxwxBgGWoB12FCky6Pi9+XlW3JGKpCpEIdHbkcQFBmvVNR9\nFFDVx5jfN+JAmcp8EvReaQ+NNmZDkbqf7M/r60yRigv3oh4dZPdOfWph9QCECEchG4r0Yrqb\nsC+vM0QKU1FREqB7Uc9XpXtnPPqzekqMnJtGNhTpw/x5rn2b1wZmpLlPoTIjQcqW6e9rf2p8\nDlzB12OkMMZJdvV5bj+UCGqYTJbbNTT0NmohTH7UE4tN6+AMKIj4thTJfr11a99/xLJ2wY4w\nOZavYHKphcDQgbcxrtSksmGxKR2cAQ3HY1ORlnURney9OMF85OW13O0Wb793PdeX8BbjpoLx\nP9WRLcbFmj9tNmXsj2VXlIlkXRbZF8m6tSRe8uwLH6BLIioTvhR5I+NaJCqqoeLo6BHJePOG\nCX3qc3fOjTDqMf6fzQv2PFeeSxssBd7HuBbJ09XQcXT0iLRkRgoe/fEuFZiRNKDi6CgTKYh3\nwhjJi5a86znr5+dsX9OVeLbcddA1K/VGBi/vw3GIdXwkVBwdRSKNydpF/Bde0A0RpPyE3slA\ne8l7gRQNR0e7SNGe/oV1U1FSL4q3OhWtWwqbVN0bjAOyKDg6ukTyY6Hs/sei+K2itOjI7Wuh\n4vIfRqBIpDA7l93/WAYWZUUqJYK2ThDpSEjBCBSJNGpG8u+3dvkGZiRYHV0iuaRAbp+fWiiJ\n5BZ317QAABHtSURBVGIia73z2Au2rBU9sUfGSGL9wT6oFCnnUSJRNh0WpBuM51FuXeSdDLQn\n3R/shCKRsmbcCZLcNrqP5Bf2JoDSLCR7Wg/POGh0DNSJFKeKg6dQh89am5ZYM04hBjoLekQK\nL8oe2/qpqCvwWBabzSXJ1syckZU7DXpEimck//ut/W1N9yLfLjMSrIM6kR64qchFTW5Gcr5F\nQVU2xvLsLAQsuc1Bm+U3QlbuJCgSqdNg2vNzoTuxWTbaGEvm789vK9Sp1YUDokgkX6L/wtO4\nO13j09sEG/w7UTYxybvHlPRr482+l8nOZNTzDgJoQpNI8VRkw3u0/YZue+hNZ497PsK1HNWN\n+s3EOfFlHbKcHS0iZa7nrLtwCrbYxCN3Y8kG/7re/EqJFLnMW3QLCpFAg0ilbxVZZiRoheZF\nCp9CLRIYlO51MZILiLzu/DIu8HF7H4u+qP/V2n5nVGvmG5doBHagaZH8W0V2wKTQmfyeQtYu\nXyXZmyuYu7pc8r4lGoE9aFekyKJBj8bcR3KNxB0mNmQu/YKpK9gmdMNIpBHYhTZFSiS69+uF\nI/4ZnYxvWdhSq/7sLmviok4FG4FdaFikuFsvQWa8M7pwSs89HWvV/TlPtFPBRmAf2hQp2wUz\nErSLKpFcaBLGNEnm4LFIatusA2k3XfWksOdvudZ8iJH0okgkL3+QyTyk5Qp1B1WK+8g2U661\nBJFGYA8UidTPQrFFyRSRnoz9Z/2Yj3w3eaWFy2e6iAFopBVVIj2vt5J09PD5F0Yf405WIhYY\njx6RjP9r7fr8VimNltR9FvNfDoyBHBqMR49I4x5s8IOYwQKBgcn2zDWk+59X0683PqcxcACm\n1B8xH8efPPtcRO7R51YcVqQRBA7kto9pwhZedO3Oe/9T6g8WToY3tQch9uhzM44pkstIFGr1\nBR4NP676nhu87V5xf81PRPjtTctpVN7+lPqDhYOxJmvbsUef23FwkUq1opRF/y+4aOvN8dPe\nqUhe3Tk5jew7nVB/sLArkFvbjmMnb/SIFE8OOUV6P7rXJfuilIXvkpeS6KOdIDzyHOxeJ7nE\nrt15735KmmOwcC082vKk3qPPDdEjUuJEZYoqz0g2LPBsuDQjPbtlRpKAGWl5FZEuyt5UGLi0\n8+acbIzk7S6K5NqzQcUlIplO7lGF650FY03WtmOPPrdDkUjzTKpQDKDG9xSMKhni7Lc/qf5g\n4WR4YyqtwB59boYikfwzdPSZXnUgnH3i7f0i7NbbGIzLphXnvvtgKOPKjyyQW9uO42qkTaRg\nkbxwBa13Rg911d6Ve4NDgiH0iORNFtbzKBWp2z9KpAZzSQ0OCQbRIxIzEjSMLpGGQp44xZaG\nLEENr2p/1iZNusrBnmBrMs5MzdJbSvdnPx0qVEKPI0clbaFIpKEMw2CJaoFsH96WfN1MKirp\nrJyu6rbH+0vlCwerXHpaQ7AARSKVJXierX34lKrwWLibPia46eNOtawo0Q6bqRu04DorlImL\nJvunnP2l1uu7QJiDifQsZ6PT/Vm/K5Pba10ZJ5vxKrtKfU/+tZvXguusUCYuuigmqtQm2NoO\nPSJVPXLhkPVfdzNU34DtJpl+b3CaeZdZbvbpKnd7vTnMuN02XDHGrxmWSYrm94+jUntZwzAJ\nPSIxI+VhRmqCI4nkzUDe9jRGMvHeJMwPm013BFufbbsWXGeFMnHR8v4Rx7pUu76r1BTOzUSR\nSAMXd8PUmsj34W3J1/V2Ry1kapbeUGF/qVaplWm7FpeGAEUiFSXwTvvwlLfh5qgJbxILQhu/\nPetV9nZ6NdOPcbehXCYqmtsfjax2tMpn/xQxxncIKbpEcgvfjGRnMTpIvIoLDkYV24Udmwc4\nRFRL0COS9+kevIjijGiCiZuIS+cFqnzCDxQQY7ue9urwWOgRiRnpaB0eCl0iZWMiLxsXh+9+\nqBOVfrx2alm/eCEFFmcc/B028yK7YWzgMiJkmRIBiXQIRRSJlM82jEhCmGJ9m1mL5Is6T8sl\nUpnUXZNrafAgDJUb29BYpNs7FYpEyimQ7kinDa+YS9T1/7euUEWj4FLS+Ddzjf85HrzIbhDK\nxk1raCxoNB91IiXXZ/H1XbDBBiIlC7f+0Kpb5Drvu3ouvYrWieQXzm0QDEWIaVpCj0iRLvGE\n5Ja2d8j069ZXwXYvwyjH/5d2bv3aJlqGXroWkg3ZTfMQawgk0CMSM1JpSEsbAgHUiRSS25GP\npiLLiluKIrkYyYYiTYmR3KiXnf9GqiEQQpFIWZNMtCNfaBq1zhPtbFApaSHcMNjL2OMj1RBI\noUikymkfn9g1nTL7gsaLY+r2PVZCedJSuQ3eaGcdlkw7aNQI6kRKPHjsst7C+qeaL1ZOstJF\n2SpvSyiqITpqDz0ileYTm82WBdFTvAzXu4JBC6u8K6E8G/m6BtEjEjOSeDsghzqRhgnLDmUi\nngrFInUN+fGX25YdU+Gt9Htj7RccHvJ1zaFIpPEJOVsyaVRVr6tcp5URjR3z8uMj1A6IoUik\nYQn6c98mm8vedCv+mWn820RJ49GIrGsgN2bbF7ICCTuvZ4l2QIoDiWRjkayNtw+Z4brqFlF8\nFYtkw16yDfWtWJvvDQ6AHpHy8iTrrmS3ZqPN/v9s9tT2w6NAv7C488gWRHp61M96iHRY9IjE\njAQNcziRRuMplSTfPPNq3vkNPUXyaj5LBDESIh0VRSJN82QCSfKtXro8onhDbszrHzzYA0Ui\njZAhWya3MbrCS6anYp3KmKyX7XOzT9QuHBTFItnoDHWRvQvuPVXizIN31veVgqSB38dIB1xs\n5S3gDOgRKZ5L4hDFhf7hvaFAqk6WvlIf2oT/uh3+vxHD9lq0iHQq9IjEjAQNo1ik1Ksk2PeF\nSwpnpHTChW15E1gt1PHVs6uKFAyiMqIx1ec1ASGKRBrM2o0p4xceLFKpNGp86x0fv/3pnSU1\n1h7vCVAk0vBpnylUqBXMSDbe1Z9XkRT+9WB2fMl9pJUOjz+IyojGVJ/XBMToEum5iMKffoMN\nT+Qw1vE+dzuRXEgV9uMvok2V8Cfsf/6bHyYYxPSALKlBTLccPSIZ34swiWf7k9fNHW5OiGYr\n26cjrHsR9BMug02ZnUEhfyyrEQyiMqIx1bMbYDp6RGJGyo+QGakJdIlUIx8jhQVcyf6l9Wta\n52k4I/n1o51+qbVEclOh66kban5EUY3iQNP2YBaKRBoyyRTL5LYGZbMVq/0OjU/2cMRtDo6o\nPoqk0uBbgyEUiZQ7e+JzKXzZb7RxgaDF56pbFM9aW//Y7jsVOxBds49FMia3OlgjHahfIGhP\nbuQnQrdI1jtxO2ee27qFHXdqhGFCfCG1WfQzYmxDmwd2lQsQKS1Bj0iFGaizpZPH+zfhM9Zr\nI64RzUTbn2du/hyzeWBXucBgJaihRyRmJGakhtEtUheT+NkCazJrA915k5dTz9vmpbnC9kY0\nnu+u/DJbvh9UbnPawOAnSK7AhI8dSFAk0ohsQ5F6b9nyyVqmwTGtl7orvBxRIz/uMTXqBWa9\nG3igSKSyJd7JVNpd68x9srtFMjeZzH0kM+czPKo0qo3CO+hGlWlg0IiSmdVKUESVSLb7WffO\n2P4Mijwobiu0W4rlq4HJrKgiqrQ4MiG0aQI9InXWdFOMCR5r8yaS4KIp3lZo18ZnYiGHFWwu\nlKlTEGi2B4sbABH0iMSMNKo92AdVIgWRjy9SvMuvMehTEmRUQo9w82Yx0oT2YB8UiVTKNiQ7\nMjXcerndfDfVwuU2a28u2920NirtwS4oEul5vnizjFPE229Tk6ytf3DH01hYc6Dw9MMRVVps\nARo1gCqRMotgSy1aGB1KEHPADPSIVNQlzlsV5pHKzlkFATz0iMSMBA2zqUj/3t/ukcfb9d+M\nLsIEQDmqGZmbK/Y9LwtGoHJuNhTp58VLhr3O6KKYTjPFPWmh4XFKpOLgbGwo0tVc/n7d174/\nL+Y6uQsva5e5uzP8rPfoE32GETOnMTgMG4p0MV/9+pe5TO4izGPn9vuLbSGwOjsbihRdjaW7\n61dnLpdQuvArtbw+pPpODzOSCMxIZ2fbGOnz+742P0ayVZH2i1OIkc7OlunvV+/a7eVnehcD\nyYRdM2dk7U7OtveRrvf7SJe39zn3kZ5na63ajqcyGp0bRU82ALQLIgEIgEgAAiASgACIBCAA\nIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEI0KhIAMqY\ncZbLi6Oi7/EwSjkOPEpEGoJRynHgUSLSEIxSjgOPEpGGYJRyHHiUiDQEo5TjwKNEpCEYpRwH\nHiUiDcEo5TjwKBFpCEYpx4FHiUhDMEo5DjxKRBqCUcpx4FEi0hCMUo4DjxKRhmCUchx4lDre\nGkDjIBKAAIgEIAAiAQiASAACIBKAAIgEIAAiAQiASAACIBKAAIgEIAAiAQiASAACIBKAAIgE\nIAAiAQiwm0jXi7lcf/bqfRj/t6k3OtaP7ofnja+9oXajbPmAfrzkDuCkUe4l0uv9qL7s1Psw\nX97PvdGxfnV/NMEbX3tD7UbZ8gG93sdzuTkz+1juJNI/c/myXxfzb5/uh/kyb91qo2P9HdHj\nh+eNr72h9qNs+IB+mT8/t5nzz5JjuZNIV/P5+/+/5n2f7of5cENrc6wf5rW7TnLja26obpQN\nH9C3xwhvA51/LHcS6c182+BTqjU+zEe32uZYzdU+T1FvfM0N1Y2y+QN6H+j8Y7mTSMb4iwZ5\nM59/fkPN22qbY/2KB3ZbNDdUN8rmD+iPeV1yLBEpz9sjNP49tu2OVYFI1hOp8QP6cbuUQyRp\njPn7+yF1vV2PNDtWVSK1fkC/L7drOERah59b9rPZsaoS6UGzB/Tncpsr9Yl0afBY5rgNsNmx\nPkfkja/FoYaDaXWUr4/7RfOP5a5Zu+/WEjcJLpPT4FiDrN23yzS1NdRUpPZG+f3y+n1fmX8s\ndxLp/Z6k/zTXfbof5mJu97nvh7HZsT5PUW98LQ61nzfbPaCf9xzIjfnHkicb8lxvB/DnflOu\n2bFqeLKhH2XDB/S790jfkw32pU+GtsnP5T7A+8dRq2PtLpq88TU41OcoGz6gf4x7DnD2sdxL\npJ/7o7U7dT6G2wBfPvrVFsfaieSNr8Gh+qNs84AaT6TZx7KlzAmAWhAJQABEAhAAkQAEQCQA\nARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAA\nkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARBJ\nHWP/YD1sCT8UdSBSi/BDARAAkQAEQKTW+L1yu3Z/TfvzzTxXva2PS7uPF3P5eLz8eTFvjy3P\nvxr++WrM66f9MS/3l90SVgSRWsOY99ufqn/9XX1//NX6a7j1LtKbcS/f7kVe+y0fj2ofv4X+\n3Vr8a973eztnAZFa43cO+rJfF/P3tvr3poGJt/7OOeb1x/68ms/by9/VW7G+wMV83V6//Jb6\nc2vxj/ne9y2dAURqDXOz49eBN7ch3Hp7/WZu8vw8Xt6nnbdngdeu7I2XezGu7DYAkVrjmd1+\nLL4/31+fIvVbH/+eROXvi+vv1d7X1+3Vx+2i7h9XdhuASK3hi/Ha2TJJJPt++d1z+b5NWZdb\npMWV3fogUmt4RvwxLx+f33mRcuXd4vP6cr+gu/5e5b1wZbcBiNQaj5jnnie4W9GJFGx968Og\nTp23bGj1ZV6/uLLbAkRqjS4/9/mw56uLkbytzxzdbwj01ovkZe1eHsm++0T0Yi5c2W0BIrWG\nMffI6DazXJ+B0L9gqxc93eKg7irP3Uf629e6TVHk7DYBkVrjV4y37hGFP79m/Oty3t3W/skG\n8+fbeuHSxyV4suHukf0xXNltAiK1Rv7h7rmPfP/OSFzZbQEitYasSK/mY8lgYCyI1BqSIj2D\nJlgfRGoNSZEuLhsO64JIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQg\nACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIg\nEoAAiAQgwP85Fk/FNHNx4AAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot(gaw$packsDay, gaw$MaxDinks, pch = 1, lwd = 2, xlab = \"papierosy\", ylab = \"alkohol\")\n", "abline(model, lwd = 2, col = \"red\")" ] }, { "cell_type": "code", "execution_count": 95, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\t
9
\n", "\t\t
8
\n", "\t
10
\n", "\t\t
9
\n", "\t
18
\n", "\t\t
17
\n", "\t
37
\n", "\t\t
34
\n", "\t
40
\n", "\t\t
37
\n", "\t
116
\n", "\t\t
102
\n", "\t
136
\n", "\t\t
115
\n", "\t
152
\n", "\t\t
126
\n", "\t
162
\n", "\t\t
135
\n", "\t
169
\n", "\t\t
140
\n", "\t
180
\n", "\t\t
149
\n", "\t
227
\n", "\t\t
179
\n", "\t
263
\n", "\t\t
209
\n", "\t
272
\n", "\t\t
216
\n", "\t
313
\n", "\t\t
251
\n", "\t
327
\n", "\t\t
262
\n", "\t
337
\n", "\t\t
270
\n", "\t
338
\n", "\t\t
271
\n", "\t
346
\n", "\t\t
278
\n", "\t
353
\n", "\t\t
284
\n", "\t
398
\n", "\t\t
323
\n", "\t
400
\n", "\t\t
324
\n", "\t
401
\n", "\t\t
325
\n", "\t
424
\n", "\t\t
344
\n", "\t
446
\n", "\t\t
364
\n", "\t
471
\n", "\t\t
387
\n", "\t
498
\n", "\t\t
409
\n", "\t
529
\n", "\t\t
434
\n", "\t
536
\n", "\t\t
439
\n", "\t
538
\n", "\t\t
441
\n", "\t
539
\n", "\t\t
442
\n", "\t
550
\n", "\t\t
449
\n", "\t
556
\n", "\t\t
455
\n", "\t
558
\n", "\t\t
457
\n", "\t
560
\n", "\t\t
459
\n", "\t
567
\n", "\t\t
464
\n", "\t
576
\n", "\t\t
470
\n", "\t
604
\n", "\t\t
496
\n", "\t
611
\n", "\t\t
503
\n", "\t
672
\n", "\t\t
552
\n", "\t
677
\n", "\t\t
556
\n", "\t
700
\n", "\t\t
576
\n", "\t
713
\n", "\t\t
588
\n", "\t
714
\n", "\t\t
589
\n", "\t
730
\n", "\t\t
603
\n", "\t
792
\n", "\t\t
659
\n", "\t
822
\n", "\t\t
686
\n", "\t
829
\n", "\t\t
691
\n", "\t
855
\n", "\t\t
713
\n", "\t
859
\n", "\t\t
717
\n", "\t
889
\n", "\t\t
743
\n", "\t
917
\n", "\t\t
763
\n", "\t
947
\n", "\t\t
786
\n", "\t
975
\n", "\t\t
812
\n", "\t
1041
\n", "\t\t
871
\n", "\t
1074
\n", "\t\t
899
\n", "\t
1123
\n", "\t\t
945
\n", "\t
1210
\n", "\t\t
1023
\n", "\t
1224
\n", "\t\t
1033
\n", "\t
1249
\n", "\t\t
1055
\n", "\t
1253
\n", "\t\t
1059
\n", "\t
1271
\n", "\t\t
1077
\n", "\t
1283
\n", "\t\t
1086
\n", "\t
1285
\n", "\t\t
1088
\n", "\t
1338
\n", "\t\t
1136
\n", "\t
1363
\n", "\t\t
1157
\n", "\t
1430
\n", "\t\t
1220
\n", "\t
1462
\n", "\t\t
1248
\n", "\t
1470
\n", "\t\t
1255
\n", "\t
1492
\n", "\t\t
1270
\n", "\t
1534
\n", "\t\t
1310
\n", "\t
1567
\n", "\t\t
1339
\n", "\t
1595
\n", "\t\t
1364
\n", "
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[9] 8\n", "\\item[10] 9\n", "\\item[18] 17\n", "\\item[37] 34\n", "\\item[40] 37\n", "\\item[116] 102\n", "\\item[136] 115\n", "\\item[152] 126\n", "\\item[162] 135\n", "\\item[169] 140\n", "\\item[180] 149\n", "\\item[227] 179\n", "\\item[263] 209\n", "\\item[272] 216\n", "\\item[313] 251\n", "\\item[327] 262\n", "\\item[337] 270\n", "\\item[338] 271\n", "\\item[346] 278\n", "\\item[353] 284\n", "\\item[398] 323\n", "\\item[400] 324\n", "\\item[401] 325\n", "\\item[424] 344\n", "\\item[446] 364\n", "\\item[471] 387\n", "\\item[498] 409\n", "\\item[529] 434\n", "\\item[536] 439\n", "\\item[538] 441\n", "\\item[539] 442\n", "\\item[550] 449\n", "\\item[556] 455\n", "\\item[558] 457\n", "\\item[560] 459\n", "\\item[567] 464\n", "\\item[576] 470\n", "\\item[604] 496\n", "\\item[611] 503\n", "\\item[672] 552\n", "\\item[677] 556\n", "\\item[700] 576\n", "\\item[713] 588\n", "\\item[714] 589\n", "\\item[730] 603\n", "\\item[792] 659\n", "\\item[822] 686\n", "\\item[829] 691\n", "\\item[855] 713\n", "\\item[859] 717\n", "\\item[889] 743\n", "\\item[917] 763\n", "\\item[947] 786\n", "\\item[975] 812\n", "\\item[1041] 871\n", "\\item[1074] 899\n", "\\item[1123] 945\n", "\\item[1210] 1023\n", "\\item[1224] 1033\n", "\\item[1249] 1055\n", "\\item[1253] 1059\n", "\\item[1271] 1077\n", "\\item[1283] 1086\n", "\\item[1285] 1088\n", "\\item[1338] 1136\n", "\\item[1363] 1157\n", "\\item[1430] 1220\n", "\\item[1462] 1248\n", "\\item[1470] 1255\n", "\\item[1492] 1270\n", "\\item[1534] 1310\n", "\\item[1567] 1339\n", "\\item[1595] 1364\n", "\\end{description*}\n" ], "text/markdown": [ "9\n", ": 810\n", ": 918\n", ": 1737\n", ": 3440\n", ": 37116\n", ": 102136\n", ": 115152\n", ": 126162\n", ": 135169\n", ": 140180\n", ": 149227\n", ": 179263\n", ": 209272\n", ": 216313\n", ": 251327\n", ": 262337\n", ": 270338\n", ": 271346\n", ": 278353\n", ": 284398\n", ": 323400\n", ": 324401\n", ": 325424\n", ": 344446\n", ": 364471\n", ": 387498\n", ": 409529\n", ": 434536\n", ": 439538\n", ": 441539\n", ": 442550\n", ": 449556\n", ": 455558\n", ": 457560\n", ": 459567\n", ": 464576\n", ": 470604\n", ": 496611\n", ": 503672\n", ": 552677\n", ": 556700\n", ": 576713\n", ": 588714\n", ": 589730\n", ": 603792\n", ": 659822\n", ": 686829\n", ": 691855\n", ": 713859\n", ": 717889\n", ": 743917\n", ": 763947\n", ": 786975\n", ": 8121041\n", ": 8711074\n", ": 8991123\n", ": 9451210\n", ": 10231224\n", ": 10331249\n", ": 10551253\n", ": 10591271\n", ": 10771283\n", ": 10861285\n", ": 10881338\n", ": 11361363\n", ": 11571430\n", ": 12201462\n", ": 12481470\n", ": 12551492\n", ": 12701534\n", ": 13101567\n", ": 13391595\n", ": 1364\n", "\n" ], "text/plain": [ " 9 10 18 37 40 116 136 152 162 169 180 227 263 272 313 327 \n", " 8 9 17 34 37 102 115 126 135 140 149 179 209 216 251 262 \n", " 337 338 346 353 398 400 401 424 446 471 498 529 536 538 539 550 \n", " 270 271 278 284 323 324 325 344 364 387 409 434 439 441 442 449 \n", " 556 558 560 567 576 604 611 672 677 700 713 714 730 792 822 829 \n", " 455 457 459 464 470 496 503 552 556 576 588 589 603 659 686 691 \n", " 855 859 889 917 947 975 1041 1074 1123 1210 1224 1249 1253 1271 1283 1285 \n", " 713 717 743 763 786 812 871 899 945 1023 1033 1055 1059 1077 1086 1088 \n", "1338 1363 1430 1462 1470 1492 1534 1567 1595 \n", "1136 1157 1220 1248 1255 1270 1310 1339 1364 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "reszty_s = rstudent(model)\n", "(k = which(abs(reszty_s) > 2))" ] }, { "cell_type": "code", "execution_count": 96, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "\n", "Call:\n", "lm(formula = MaxDinks ~ packsDay, data = gaw[-k, ])\n", "\n", "Residuals:\n", " Min 1Q Median 3Q Max \n", "-27.389 -10.293 -4.811 6.640 80.791 \n", "\n", "Coefficients:\n", " Estimate Std. Error t value Pr(>|t|) \n", "(Intercept) 15.20945 0.51314 29.640 < 2e-16 ***\n", "packsDay 0.14320 0.01859 7.704 2.58e-14 ***\n", "---\n", "Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n", "\n", "Residual standard error: 15.63 on 1319 degrees of freedom\n", " (220 observations deleted due to missingness)\n", "Multiple R-squared: 0.04306,\tAdjusted R-squared: 0.04233 \n", "F-statistic: 59.35 on 1 and 1319 DF, p-value: 2.583e-14\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model2 = lm(MaxDinks~packsDay, data = gaw[-k,])\n", "summary(model2)" ] }, { "cell_type": "code", "execution_count": 98, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "Call:\n", "lm(formula = log(MaxDinks + 1) ~ packsDay + sex, data = gaw)\n", "\n", "Residuals:\n", " Min 1Q Median 3Q Max \n", "-3.2011 -0.4490 0.0431 0.4882 2.3217 \n", "\n", "Coefficients:\n", " Estimate Std. Error t value Pr(>|t|) \n", "(Intercept) 2.0363180 0.0309524 65.79 < 2e-16 ***\n", "packsDay 0.0063625 0.0009208 6.91 7.39e-12 ***\n", "sexM 0.8662911 0.0423924 20.43 < 2e-16 ***\n", "---\n", "Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n", "\n", "Residual standard error: 0.7774 on 1378 degrees of freedom\n", " (233 observations deleted due to missingness)\n", "Multiple R-squared: 0.2748,\tAdjusted R-squared: 0.2737 \n", "F-statistic: 261.1 on 2 and 1378 DF, p-value: < 2.2e-16\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model3 = lm(MaxDinks~packsDay+sex, data = gaw)\n", "summary(model3)" ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 4 }