

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Deep Learning in the bioinformatic modelling of taxonomically annotated microbial communities in aquaculture

Marek Sztuka & Joanna Szyda

Goals:

DL approaches to classification of microbiome data Architectures (CNN, FNN) Dimensionality reduction

Development of DL model capable of classifing ponds which differed in probiotic supplementation

Materials

- Environmental microbiome of fish intestine
- Sequenced reads of 16S rRNA gene
- 5 experimental setups, with different probiotic supplementation

Materials

- Features Bacteria families
- Samples Individuals
- Cells Bacteria abundance
- Zero inflated data

samples

125

Input transformation

Centered log-ratio transformation

Baseline

Random class assignment
XGBoost

- Depth of the tree: 3
- eta: 0.1

Model Architecture - FNN

- Activation Relu
- Optimizer ADAM
- Loss categorical crossentropy
- Metric accuracy
- Weight regularizer L2 (0.01)

Model Architecture - CNN

- Activation Relu
- Optimizer ADAM
- Loss categorical crossentropy
- Metric accuracy
- Weight regularizer L2 (0.01)

Results 5 class

Results 3 class

Results 2 class

Conclusions Architectures

- Overall increase in accuracy when reducing No. classes
- Worse performance for CNN approaches due to non existent structural patterns
- FNN models proved to be slightly better than baseline xgboost
- Plain Convolution was the worst approach

Conclusions **Dimensionality reduction**

 Out of dimensionality reduction techniques embedding yield most satsfactionary results

THE BIOSTATISTIC GROUP

LEADER **PROFESSOR JOANNA SZYDA**

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Leading Research Group THETA

BIOSTATISTICS GROUP WROCLAW, POLAND

Autoencoder Embedding

