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COPY NUMER VARIATION (CNV)

Zmiennosc liczby kopii obejmuje duplikacje i delecje dtuzsze niz 1 000 pz (rozne

definicje).
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sDifferent types of CNVs and an example of
genome-wide detection of CNVs. The plot
illustrates deletion, duplication, and multiple
segmental duplication of the "D" locus compared
with the reference genome. Inversion of "C" and
"D" loci is also illustrated.”

Yim SH et al. 2015. Clinical implications of copy

number variations in autoimmune disorders.
Korean J Intern Med. ;30(3):294-304.
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CEL BADAN

Populacje Afryki cechujq sie najwiekszqg na swiecie réznorodnosciq genomowag,.

Populacje zajmujq zréznicowane srodowiska, majq rézne pochodzenie oraz wykazujq
réznice na poziomie genomu zwiqzane z podatnosciq na choroby zakazne (np.
malaria, gruzlica i HIV) i dostosowaniami srodowiskowymi.

CEL = analiza catych genoméw (WGS) pod kgtem CNV w populacjach z réznych
grup etniczno-lingwistycznych.
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DANE

TrypanoGEN+ to
miedzynarodowa sieé , Trypa noGEN™

Visit TrypanoGEN (First Phase) & Wybierz jezyk | v

. : The genetic determinants of two neglected tropical diseases
badawcza, stosujgca _ .
An AAS/Wellcome funded project under the H3Africa initiative
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'|'rO p | kCI I n)’C h: The genetic determinants of two neglected tropical diseases
® é p i QCZki d f ry kC] I"]S kiei ( HAT) TrypanoGEN+ is an international collaborative research network

applying an integrated approach to the study of the genetic

2 determinants of two neglected tropical diseases: Trypanosomiasis
* schistosomatozy ey

(HAT) and Schistosomiasis.

.
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TrypanoGEN+ jest
kontynuacjq TrypanoGEN,

k‘l‘ o k . . * . Introduction: Vision:

OI’CI S Upld SI% Wy q.czn Ie TrypanoGEN+ is an international collaborative research network In both HAT and Schistosomiasis, there are populations of individuals that are
HAT applying an integrated approach to the study of the genetic likely to play a significant role in disease transmission (asymptomatics in HAT

na .

determinants of two neglected tropical diseases: Human African and high egg shedders in Schistosomiasis). Our research vision is to provide a

Trypanosomiasis (HAT) and Schistosomiasis, in Sub-Saharan Africa. fundamental understanding of the host genetic factors and molecular

TrypanoGEN+ is a continuation of TrypanoGEN that focused only on interactions between host and parasite, that lead to these phenotypes as well

HAT. as investigating the role these populations play in disease transmission and the
maintenance of foci of disease

ANALIZA DANYCH NGS 2024/2025 MAGDA MIELCZAREK



TrypanoG EN*

The genetic determinants of two neglected tropical diseases
An AAS/Wellcome funded project under the H3Africa initiative

DANE

Table 1 Ethnicity and origin of individuals analysed for CNV

Pop Country District Ethno-linguistic group (ethnologue code, n)
UNL Uganda Maracha Lugbara (IGG, 50)

UBB Uganda lganga Basoga (XOG, 33)

DRC Democratic Republic of Congo Bandundu Kingongo (NOQ, 30)
Kimbala (MDP, 20)

GAS Guinea Forecariah Boffa, Dubreka Soussou (SUS, 49)

civ Cote d'lvoire Bonon Baoule (BCl, 11)
Sinfra Gouro (GOA 21)
Moore (MOS, 12)

Senoufo (SEF, 4)

Malinke (LOI, 1)

Koyaka (KGA, 1)

Ethnologue codes are derived from the ethnic languages of the world resource [13]

SEKWENCJONOWANIE:
* WGS * Srednie pokrycie genomu 10X
* [llumina Hiseq2500 ° autosomy
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METODY

1. Detekcja polimorfizméw SNP i CNV
Charakterystyka CNV, adnotacja funkcjonalna
Okredlenie zréznicowania populaciji: PCA, Fg;

Okreslenie haplotypéw na bazie CNV

ou s e be

.. I iInne
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DETEKCJA SNP

Pipeline:

*Przyréwnanie odczytéw do genomu referencyjnego
(BWA)

*Detekcja SNP zgodna z protokotem GATK — ,,Genome
analysis tool kit best practice guideline”
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DETEKCJA SNP

Raw Unmapped Reads

Map to Reference

Raw Mapped Reads

Mark Duplicates
Recalibrate Base
Quality Scores
Analysis-Ready Reads

[ ——————————————

LR Raw SNPS : IndelS -ﬂ
Analysis-Ready Reads

Filter Variants
Call Variants Per-Sample
HaplotypeCaller in GVCF mode Refine Genotypes

Annotate Variants

Analysis-Ready

Evaluate Callset

Raw SNPs + Indels [ |
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Consolidate GVCFs

Joint-Call Cohort
GenotypeGVCFs




DETEKCJA SNP

Pipeline:

*Przyréwnanie odczytéw do genomu referencyjnego
(BWA)

*Detekcja SNP zgodna z protokotem GATK — ,,Genome
analysis tool kit best practice guideline”

*Filtrowanie zbioru SNP:
* usuniecie loci z > 10% brakujgcych SNP
* usuniecie oséb z > 10% brakujgcych loci

* usuniecie loci w bliskiej odlegtosci

ANALIZA DANYCH NGS 2024/2025
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DETEKCJA CNV

Programy (,,population scale data”):
cn.MOPS (algorytm RD)
GenomeSTRIP (algorytmy RD, RP, SR)
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tandem duplication deletion

inversion insertion

Tattini et al. 2015, doi: 10.3389 /fbioce.2015.00092



DETEKCJA CNV

Programy (,,population scale data”) :
*cn.MOPS (algorytm RD)
*GenomeSTRIP (algorytmy RD, RP, SR)

Konsensus:

*wybranie wspdélnego zbioru dla dwéch programéw

*jak duza musi by¢ czesé wspdlna ¢

*,,GenomeSTRiP has previously been used to detect CNVs in the 1000 Genomes
project of human populations. To validate detected CNVs (2) we tested for overlap
with published CNVs in the public Database of Genomic Variants ( ).”

*Adnotacja funkcjonalna
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WYNIKI
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Table 2 CNV statistics using GenomeSTRIiP and cn.MOPS algorithms

Parameter

GenomeSTRIP GenomeSTRIP that overlap cn.MOPS

Raw CNV regions (CNVR) € /I_
CNVR after QC

Total CNV scored

Deletion CNV

Gain CNV

Mean CNV count per CNVR
Mean CNVR per individual
Count of overlapping CNVRs ®
Mean Length of CNVR (kb)
SD length of CNVR (kb)
Median Length of CNVR (kb)
Total Length of CNVR (Mb)

16,149

11,275 7608
127,699 106,922
65,588 61,025
62,111 45,897
1.3 140

9.5
13.2
53
108.1

Observed Length CNV present in both methods (Mb) (Simulated + SD)° 812 (434+10)

Descriptive statistics of CNVR found using GenomeSTRiP and ¢n.MOPS. Note that: GenomeSTRiP has about 5.3 times the number of CNVs compared with cn.MOPS

(11,275 cf. 2115); GenomeSTRIP CNVRs were shorter
times greater (1146 Mb cf. 108 Mb) than GenomeSTF

has overlapping CNVs; CNVRs after QC = The CNVRs

length 5.3 kb) than cn.MOPS (median length 32.4 kb); Total length of cn.MOPS CNVRs was about 10.6
CNVR = CNV region; a genomic location with chromosome, start and end base pair positions that
some CNVRs were dropped because they were only found in samples that were outliers in principal

component analysis (PCA) plots of raw data. CNV count per CNVR = Number of samples with a CNV at each CNV region = Total CNVs count/ Total CNVRs; Mean
CNVRs per sample = Count of CNV divided by number of samples; Mean, Standard deviation, Median, Total length, Observed length: Calculated per CNV not CNVR
Count of any overlap (minimum 1 bp) between GenomeSTRiP and cn.MOPS CNVR

"The expected length of CNVs that would be found by both methods was obtained by 100 simulations using all the observed lengths of CNVs allocated to

random places in the genome
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Table 2 CNV statistics using GenomeSTRIiP and cn.MOPS algorithms

WY N I I( I Parameter D, GenomeSTRiP GenomeSTRIP that overlap cnMOPS

Raw CNV regions (CNVR) 16,149

CNVR after QC 11,275 7608
Total CNV scored 127,699 106,922
Deletion CNV 65,588 61,025
Gain CNV 62,111 45,897
Mean CNV count per CNVR 13 14.0
Mean CNVR per individual
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Mean Length of CNVR (kb) 9.5
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component 3 PCA) plots of raw data. CNV count per CNVR = Number of samples with a CNV at each CNV region = Total CNVs count/ Total CNVRs; Mean
CNVRs per sample = Count of CNV divided by number of samples; Mean, Standard deviation, Median, Total length, Observed length: Calculated per CNV not CNVR
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WYNIKI
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Table 2 CNV statistics using GenomeSTRIiP and cn.MOPS algorithms

Parameter GenomeSTRIP GenomeSTRIP that overlap cn.MOPS
Raw CNV regions (CNVR) 16,149

CNVR after QC 11,275 7608
Total CNV scored 127,699 106,922
Deletion CNV 65,588 61,025
Gain CNV 62,111 45,897
Mean CNV count per CNVR 13 14.0
Mean CNVR per individual

ount of overlapping CNVRs @
Mean Length of CNVR (kb) 9.5
SD length of CNVR (kb) 132
Median Length of CNVR (kb) 53

Total Length of CNVR (Mb) 108.1
Observed Length CNV present in both methods (Mb) (Simulated + SD)° 812 (434+10)

Descriptive statistics of CNVR found using GenomeSTRiP and ¢n.MOPS. Note that: GenomeSTRiP has about 5.3 times the number of CNVs compared with cn.MOPS
(11,275 cf. 2115); GenomeSTRIP CNVRs were shorter (median length 5.3 kb) than cn.MOPS (median length 32.4 kb); Total length of cn.MOPS CNVRs was about 10.6
times greater (1146 Mb cf. 108 Mb) than GenomeSTRiP CNVRs. CNVR = CNV region; a genomic location with chromosome, start and end base pair positions that
has overlapping CNVs; CNVRs after QC = The CNVRs left after some CNVRs were dropped because they were only found in samples that were outliers in principal
component analysis (PCA) plots of raw data. CNV count per CNVR = Number of samples with a CNV at each CNV region = Total CNVs count/ Total CNVRs; Mean
CNVRs per sample = Count of CNV divided by number of samples; Mean, Standard deviation, Median, Total length, Observed length: Calculated per CNV not CNVR
"Count of any overlap (minimum 1 bp) between GenomeSTRiP and cn.MOPS CNVR

"The expected length of CNVs that would be found by both methods was obtained by 100 simulations using all the observed lengths of CNVs allocated to
random places in the genome
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WYNIKI
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Table 2 CNV statistics using GenomeSTRIiP and cn.MOPS algorithms

Parameter GenomeSTRIP GenomeSTRIP that overlap cn.MOPS

Raw CNV regions (CNVR) 16,149

CNVR after QC 11,275 7608
Total CNV scored 127,699 106,922
Deletion CNV 65,588 61,025
Gain CNV 62,111 45,897

Mean CNV count per CNVR 11.3 14.0
Mean CNVR per individual

Count of overlapping CNVRs ®

Mean Length of CNVR (kb) 9.5

SD length of CNVR (kb) 132

Median Length of CNVR (kb) 53

Total Length of CNVR (Mb) 108.1

Observed Length CNV present in both methods (Mb) (Simulated + SD)° 812 (434+10)

Descriptive statistics of CNVR found using GenomeSTRiP and ¢n.MOPS. Note that: GenomeSTRiP has about 5.3 times the number of CNVs compared with cn.MOPS
(11,275 cf. 2115); GenomeSTRIP CNVRs were shorter (median length 5.3 kb) than cn.MOPS (median length 32.4 kb); Total length of cn.MOPS CNVRs was about 10.6
times greater (1146 Mb cf. 108 Mb) than GenomeSTRiP CNVRs. CNVR = CNV region; a genomic location with chromosome, start and end base pair positions that
has overlapping CNVs; CNVRs after QC = The CNVRs left after some CNVRs were dropped because they were only found in samples that were outliers in principal
component analysis (PCA) plots of raw data. CNV count per CNVR = Number of samples with a CNV at each CNV region = Total CNVs count/ Total CNVRs; Mean
CNVRs per sample = Count of CNV divided by number of samples; Mean, Standard deviation, Median, Total length, Observed length: Calculated per CNV not CNVR
Count of any overlap (minimum 1 bp) between GenomeSTRiP and cn.MOPS CNVR

"The expected length of CNVs that would be found by both methods was obtained by 100 simulations using all the observed lengths of CNVs allocated to
random places in the genome
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TRiP and cn.MOPS algorithms

GenomeSTRIP GenomeSTRIP that overlap cn.MOPS
16,149

11,275 7608

Method
cnMOPS

Frequency
N
o
o
o

0 gsTRiP
127,699 106,922
1000 - 65,588 61,025

I 62,111 45,897
11.3 140

]
)
60

'
1 3 8 22 163 442 >1000
CNVR length kb In scale

Mean Length of CNVR (kb) 9.5

SD length of CNVR (kb) 132

Median Length of CNVR (kb) 53

Total Length of CNVR (Mb) 108.1

Observed Length CNV present in both methods (Mb) (Simulated + SD)° 812 (434+10)

Descriptive statistics of CNVR found using GenomeSTRiP and ¢n.MOPS. Note that: GenomeSTRiP has about 5.3 times the number of CNVs compared with cn.MOPS
(11,275 cf. 2115); GenomeSTRIP CNVRs were shorter (median length 5.3 kb) than cn.MOPS (median length 32.4 kb); Total length of cn.MOPS CNVRs was about 10.6
times greater (1146 Mb cf. 108 Mb) than GenomeSTRiP CNVRs. CNVR = CNV region; a genomic location with chromosome, start and end base pair positions that
has overlapping CNVs; CNVRs after QC = The CNVRs left after some CNVRs were dropped because they were only found in samples that were outliers in principal
component analysis (PCA) plots of raw data. CNV count per CNVR = Number of samples with a CNV at each CNV region = Total CNVs count/ Total CNVRs; Mean
CNVRs per sample = Count of CNV divided by number of samples; Mean, Standard deviation, Median, Total length, Observed length: Calculated per CNV not CNVR
Count of any overlap (minimum 1 bp) between GenomeSTRiP and cn.MOPS CNVR

"The expected length of CNVs that would be found by both methods was obtained by 100 simulations using all the observed lengths of CNVs allocated to
random places in the genome
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WYNIKI
WSPOLNE | UNTKALNE CNVR
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Fig. 2 Venn diagram showing counts of CNVR shared between

populations. a All CNVR from Nig
(NCB) and Nilo-Saharan (NS) ethnic groups. CNVR overlapping 5 kb
genomic regions were plotted for each population. A majority of the
CNVR are shared between populations, but Nilo-Saharans appear to
have the least CNVR, with most of them shared with the Niger
Congo A and Niger Congo B. b Sharing of novel CNV regions
between populations. Most novel CNVR are unique to individual

populations studied whereas others are shared. To enable
arison, the genome was divided into 5 kb regions and regions

with novel CNVR in each of these regions for each population were

compared for overlaps

Co to znaczy, ze CNV sq wspdlne dla danej
populacji¢ Czy idealny overlap (w granicach
»okna”)?

224 (2.9%) z 7 608 CNV nie byto wczesniej
opisanych w bazie danych DGV (novel
CNVs).
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ADNOTACJA FUNKCJONALNA

ANALIZA DANYCH NGS 2024/2025

snoRNA
sense_intronic
misc_RNA
processed_transcript
antisense
Promoter
Enhancer
TF_binding_site
lincRNA

pseudogene

Promoter_Flanking_Region

CTCF_Binding_Site
Open_chromatin

protein_coding

Lista gendw i elementow
regulatorowych z Ensembl.

u Proportion for novel CNVR

B Proportion for all CNVR
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ADNOTACJA FUNKCJONALNA
NOVEL CNVS

*Lista gendw i elementéw regulatorowych z Ensembl.
»1hey intersected 293 unique genes or regulatory regions, with no specific function enriched and
were not generally shared between the populations.”

* Ontologie genéw
+27% of the novel CNVRs overlapped genes encoding binding function (GO: 0005488) and 20%
(22/109) overlapped genes involved in catalytic activity (GO: 0003824).”

* ,,Both the known and novel CNVR overlapped Mendelian inheritance disease-associated genes”
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Fig. 6 PCA plot showing CNV population structure in our data
compared to 1000 Genomes. The PCA distinguishes major
continental populations from each other, but is not able to resolve
specific populations within the continental populations. Africans in
the 1000 Genomes (AFR) are closer to our data (TGN). Conventions
for major continental populations are described by the 1000
genomes project [8, 23]. b PCA plot showing population structure
for bi-allelic deletion CNV. Phase information is non-ambiguous for
bi-allehhe Africans in the 1000 Genomes overlay the
TrypanoGEN African samples, indicating similar CNV in the datasets.
c PCA plot showing population structure due to bi-allelic{insertion |
CNV. There was no specific pattern observed as fewer bi-allelic
insertions were available in the data
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PODSUMOWANIE | WNIOSKI

*Zaprezentowano zmiennos$¢ genetycznq populacji afrykanskich grup etnicznych.

*3% CNVR nie byto wczesniej znanych v cztowieka, co odzwierciedla zréznicowany
charakter afrykanskich populacji. Nowe CNVR umieszczono w bazie danych DGV.

*Opisane CNV:

* wystepujg w genach, ktérych zmiany powodujq choroby mendlowskie

* naktadajq sie na SNP istotnie zwigzane z réznymi cechami w katalogu GWAS

*Rozrdéznienie populacji na poziomie kontynentalnym jest mozliwe przy uzyciu CNY,
ale wewnqtrz kontynentu juz nie.
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CNV DETECTION (2025)
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CNV DETECTION (2025)
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Results

While tools vary in|sensitivity (7%—83%) and precision (1%—76%), [few meet the
sensitivity needed for clinical testing. Callers generally perform better for
deletions (up to 88% sensitivity) than duplications (up to 47% sensitivity), with

poor detection of duplications under 5 kbl Notably, for CNVs in genes commonly

included in clinical panels, significantly improved sensitivity and precision were

benchmarking against 25 cell lines with known CNVs| DRAGEN
v4.2 high-sensitivity CNV calls, post-processed with custom filters, achieved
100% sensitivity and 77% precision on the optimized gene panel after excluding
recurring artifacts. This level of performance may support clinical use with
orthogonal confirmation of reportable CNVs, pending validation on laboratory-
specific samples.
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|

Sensitivity
Precision

Figure 1.

Genome-wide performance of CNV callers.
DRAGEN v4.2 CNV caller achieved the best
balance of sensitivity and precision. In high-
sensitivity  mode (DRAGEN HS), it
demonstrated the highest sensitivity but with
reduced precision. Cue achieved the highest
precision but had lower sensitivity, partly
due to its inability to detect events smaller
than 5kb. Custom filters applied to
DRAGEN HS (referred to as DRAGEN HS-F)
improved precision with only a slight
reduction in sensitivity.
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CNV DETECTION (2025)

Deletions Duplications Figure 2.

obeed Genome-wide performance

 Precision of the CNV callers stratified
by (NV  type. The
performance for deletions
followed trends observed in
the overall metrics in Fig. 1.
Sensitivity for duplications
was  significantly  lower
across all callers, with
DRAGEN HS achieving the
highest sensitivity and Cue
achieving  the  highest
precision.
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CNV DETECTION (2025)

5 Conclusions

This study highlights the critical need for continuous benchmarking and refinement of
CNV detection tools to meet the demands of clinical diagnostics. DRAGEN v4.2 HS-F,
with its adjustable balance between sensitivity and precision, demonstrates strong
potential for integrating WGS into clinical diagnostic pipelines. Further advancements
in CNV detection methods are essential to enhance analytical accuracy while reducing
both costs and reliance on orthogonal validation of WGS results.
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PIPELINE (1)

UNIVERSITET

# aDNA Atlas aDNA Pipeline

Q Search docs

Contents:

Current Version
Uppmax

The current verion of the pipeline uses cutadapt v. 2.3 for trimming adapters and FLASH v. 1.2.11 for merging of fastq reads)] Cutadapt

aDNA pipeline searches for a predefined adapter sequence and trims the reads if at least 3 bp overlaps between the end of the read and the adapter

Authentication sequence. The pipeline is also set up in such a way that it is sensitive to dual vs. single indexing, as well as HiSeg ovaSeq

sequencing techiques and it accepts a 20% error level in the overlapping region. When the reads are trimmed,| FLASH [collapses the PE
Merging of bams data into a single fastq file if the read-pair overlaps with 11 bp. The FLASH output fastq files (ExtendedFrags, notCombined_1 and and
notCombined_2) are then merged into a single fastq file called cutadapt-eq set-FLASH corrected and ends with .all.fastqg.gz. You can
find these fastq files in /proj/snic2028-2-10/1000AncientGenomes/mergedfastqgs/ .

Haplogroups
PCA

This essentially[single-end fastq file ]s then mapped against a reference genome using(-l 16500 -n @.81 -o 2). The bamfile
will contain all mapped reads (including PCR duplicates, short reads etc) and is located in /proj/snic2020-2-
18/10e8AncientGenomes/hg19bams/mapped/

Per default all deliveries are mapped against human reference genome build 37 (hg19).

Version Filename
hg18 human_b36_male_nohaps.fa

hg19 hs37d5.fa




SYNOPSIS

bwa index ref.fa
bwa mem ref.fa reads.fq > aln-se.sam

bwa mem ref.fa readl.fq read2.fq > aln-pe.sam

[bwa aln ref.fa short_read.fq > aln_sa.sai ]

bwa samse ref.fa aln_sa.sai short_read.fg > aln-se.sam

bwa sampe ref.fa aln_sal.sai aln_sa2.sai readl.fq read2.fq > aln-pe.sam

bwa bwasw ref.fa long_read.fq > aln.sam

DESCRIPTION

BWA is a software package for mapping low-divergent sequences against a large reference genome, such
as the human genome. It consists of three algorithms: BWA-backtrack, BWA-SW and BWA-MEM. The first
algorithm is designed for Illumina sequence reads up to 1@@bp, while the rest two for longer
sequences ranged from 70bp to 1Mbp. BWA-MEM and BWA-SW share similar features such as long-read
support and split alignment, but BWA-MEM, which is the latest, is generally recommended for high-
quality queries as it is faster and more accurate. BWA-MEM also has better performance than BWA-
backtrack for 70-100bp Illumina reads.

For all the algorithms, BWA first needs to construct the FM-index for the reference genome (the
index command). Alignment algorithms are invoked with different sub-commands: aln/samse/sampe for
BWA-backtrack, bwasw for BWA-SW and mem for the BWA-MEM algorithm.




Feature Modern DNA Ancient DNA
Read length Long (100-250 bp) Short (30—80 bp)

BWA A |_ N DNA quality High Degraded, chemically modified

Seeding Enabled for speed Disabled to improve sensitivity

Mismatch allowance  Higher (tolerant) Lower (conservative to reduce noise)

bwa aln
-1 16500 Gap handling Simple (1 gap) More flexible (2 gaps)
-n 0.01

OPTIONS:
-0 2

-n NUM | Maximum edit distance if the value is INT, or the fraction of missing
alignments given 2% uniform base error rate if FLOAT. In the latter case, the
maximum edit distance is automatically chosen for different read lengths.
[0.04]

Maximum number of gap opens [1]

Maximum number of gap extensions, -1 for k-difference mode (disallowing long
gaps) [-1]

Disallow a long deletion within INT bp towards the 3’-end [16]

Disallow an indel within INT bp towards the ends [5]

Take the first INT subsequence as seed. If INT is larger than the query
sequence, seeding will be disabled. For long reads, this option is typically
ANALIZA DANYCH NGS 2024/2025 ranged from 25 to 35 for -k 2°. [inf]




PIPELINE (1)

UNIVERSITET

# aDNA Atlas aDNA Pipeline

Q Search docs

Contents:

Current Version
Uppmax

The current verion of the pipeline uses cutadapt v. 2.3 for trimming adapters and FLASH v. 1.2.11 for merging of fastq reads
searches for a predefined adapter sequence and trims the reads if at least 3 bp overlaps between the end of the read and the adapter
Authentication sequence. The pipeline is also set up in such a way that it is sensitive to dual vs. single indexing, as well as HiSovaSeq

sequencing techiques and it accepts a 20% error level in the overlapping region. When the reads are trimmed,| FLASH [collapses the PE
Merging of bams data into a single fastq file if the read-pair overlaps with 11 bp. The FLASH output fastq files (ExtendedFrags, notCombined_1 and and
notCombined_2) are then merged into a single fastq file called cutadapt-eq set-FLASH corrected and ends with .all.fastqg.gz. You can
find these fastq files in /proj/snic2028-2-10/1000AncientGenomes/mergedfastqgs/ .

This essentially[single-end fastq file ]s then mapped against a reference genome using(-l 16500 -n 0.01 -0 2). The

will contain all mapped reads (including PCR duplicates, short reads etc) and is located in /proj/snic2020-2-
18/10e8AncientGenomes/hg19bams/mapped/

aDNA pipeline

Haplogroups
PCA

Per default all deliveries are mapped against human reference genome build 37 (hg19).

Version Filename
hg18 human_b36_male_nohaps.fa

hg19 hs37d5.fa




BWA ALN | SAMSE

SYNOPSIS

bwa index ref.fa

bwa mem ref.fa reads.fq > aln-se.sam

bwa mem ref.fa readl.fq read2.fq > aln-pe.sam

bwa aln ref.fa short_read.fq > aln_sa.sai
bwa samse ref.fa aln_sa.sai short_read.fq > aln-se.sam

bwa sampe ref.fa aln_sal.sai aln_sa2.sai readl.fq read2.fq > aln-pe.sam

bwa bwasw ref.fa long_read.fq > aln.sam

bwa samse [-n maxOcc] <in.db.fasta> <in.sai> <in.fqg> > <out.sam>

Generate alignments in the SAM format given single-end reads. Repetitive hits will be
randomly chosen.
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PIPELINE (1)

UNIVERSITET

# aDNA Atlas aDNA Pipeline

Q Search docs

Contents:

Current Version
Uppmax

The current verion of the pipeline uses cutadapt v. 2.3 for trimming adapters and FLASH v. 1.2.11 for merging of fastq reads
searches for a predefined adapter sequence and trims the reads if at least 3 bp overlaps between the end of the read and the adapter
Authentication sequence. The pipeline is also set up in such a way that it is sensitive to dual vs. single indexing, as well as HiSovaSeq

sequencing techiques and it accepts a 20% error level in the overlapping region. When the reads are trimmed,| FLASH [collapses the PE
Merging of bams data into a single fastq file if the read-pair overlaps with 11 bp. The FLASH output fastq files (ExtendedFrags, notCombined_1 and and
notCombined_2) are then merged into a single fastq file called cutadapt-eq set-FLASH corrected and ends with .all.fastqg.gz. You can
find these fastq files in /proj/snic2028-2-10/1000AncientGenomes/mergedfastqgs/ .

This essentially single-end fastq file is then mapped against a reference genome using(-l 16500 -n 0.01 -0 2). The

will contain all mapped reads (including PCR duplicates, short reads etc) and is located in /proj/snic2020-2-
18/10e8AncientGenomes/hg19bams/mapped/

aDNA pipeline

Haplogroups

PCA

Per default all deliveries are mapped against human reference genome build 37 (hg19).

Version Filename

hg18 human_b36_male_nohaps.fa

[hg’lg hs37d5.fa ]




Homo sapiens mitochondrion, complete genome
H S 3 7 D S. FA NCBI Reference Sequence: NC_012920.1

FASTA  Graphics

Go to: (v

Description LOCUS NC_012920 16569 bp DNA circular PRI ©3-APR-2823

DEFINITION Homo sapiens mitochondrion, complete genome.
Full lOOOgenomeS Phase?2 Reference Genome Sequence (h937d5), based on NCBI GRCh3 ACCESSION NC 912920 AC 6600821

VERSION ~ NC_612920.1
Note DBLINK BioProject: PRINA927338
KEYWORDS ~ RefSeg.

This BSgenome data package was made from the following source data file: SOURCE mitochondrion Homo sapiens (human)

ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/reference/phase2_reference assemhlv

sequence/hs37d5. fa. gz This Revised Cambridge Reference Sequence (rCRS) has eighteen

The genome is composed of: specific corrections or confirmations of the original 1981 sequence
of Anderson et al [PMID:7219534]. Seven nucleotides are confirmed
as rare polymorphisms, maintained as: 263A, 311C-315C, 750A, 1438A,
4769A, 8868A, and 15326A. Eleven nucleotides are error

* The rCRS mitochondrial sequence (AC:NC_012920) corrections: 3107del, 3423T, 4985A, 9559C, 11335C, 13702C, 14199T,
* Human herpesvirus 4 type 1 (AC:NC_007605) 14272C, 14365C, 14368C, and 14766C. These 11 errors in the
original Cambridge sequence were determined to be either outright
sequencing errors (8 instances) or due to the presence of bovine

* Integrated reference sequence from the GRCh37 primary assembly (chromosomal pl
calized and unplaced contigs)

» Concatenated decoy sequences (hs37d5cs.fa.gz)

For details, please see ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/ref¢ DNA (2 instances) or Hela DNA (1 instance) mixed in with the

phase2_reference_assembly_sequence/README_human_reference_20110707. original human placental DNA [PMID:10508508]. HISTORICAL
NUCLEOTIDE NUMBERS ARE MAINTAINED by indicating 3197del as 'N'.

Author(s) A summary table of the reanalysis data is available online at
http://www.mitomap.org/MITOMAP/CambridgeReanalysis

Juhan Gehring <julian.gehring@embl.de>
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Human gammaherpesvirus 4, complete genome

NCBI Reference Sequence: NC_007605.1
FASTA  Graphics

= LOCUS NC_ee76e5 171823 bp DNA circular VRL 13-AUG-2018

DEFINITION Human gammaherpesvirus 4, complete genome.
ACCESSION NC_ee7ee5

VERSION NC_ee76e5.1

DBLINK BioProject: PRINA485481

Description

Full 1000genomes Phase2 Reference Genome Sequence (hs37d5), based on NCBI GRCh3]

Note

This BSgenome data package was made from the following source data file:

ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/reference/phase2_refer
sequence/hs37d5.fa.gz

The genome is composed of:
* Integrated reference sequence from the GRCh37 primary assembly (chromosomal pl
calized and unplaced contigs)
* The rCRS mitochondrial sequence (AC:NC_012920)
* Human herpesvirus 4 type 1 (AC:NC_007605)

» Concatenated decoy sequences (hs37d5cs.fa.gz)

For details, please see ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/ref¢g
phase2_reference_assembly_sequence/README_human_reference_20110707.

Author(s)

Julian Gehring <julian.gehring@embl.de>
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HS37DS.FA

Description

Full 1000genomes Phase2 Reference Genome Sequence (hs37d5), based on NCBI GRCh3

Note

This BSgenome data package was made from the following source data file:

ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/reference/phase2_refer
sequence/hs37d5.fa.gz

The genome is composed of:

* Integrated reference sequence from the GRCh37 primary assembly (chromosomal pl
calized and unplaced contigs)

* The rCRS mitochondrial sequence (AC:NC_012920)
* Human herpesvirus 4 type 1 (AC:NC_007605)

» Concatenated decoy sequences (hs37d5cs.fa.gz)

For details, please see ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/ref¢g
phase2_reference_assembly_sequence/README_human_reference_20110707.

Author(s)

Julian Gehring <julian.gehring@embl.de>
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VARIANT CALLER
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Bioinformatics, Volu
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Abstract

Motivation

The study of ancient genomes can elucidate the evolutionary past. However,

analyses are complicated by base-modifications in ancient DNA molecules that
result in errors in DNA sequences. These errors are particularly common near the
ends of sequences and pose a challenge for genotype calling.

Results

I describe an iterative{method that estimates genotype frequencies and errors ]

along sequences to allow for accurate genotype calling from ancient sequences.
The implementation of this method, called snpAD, performs well on high-
coverage ancient data, as shown by simulations and by subsampling the data of a
high-coverage Neandertal genome. Although estimates for low-coverage genomes
are less accurate, I am able to derive approximate estimates of heterozygosity from
several low-coverage Neandertals. These estimates show that low heterozygosity,

compared to modern humans, was common among Neandertals.
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Software | Open access ‘ Published: 31 March 2016

EAGER: efficient ancient genome reconstruction

Alexander PeltzerE, Gunter Jager, Alexander Herbig, Alexander Seitz, Christian Kniep, Johannes Krause

& Kay Nieselt

Genome Biology 17, Article number: 60 (2016) ‘ ite this article .
C] Genome Biology
14k Accesses | 231 Citations ‘ 33 Altmetric | Metrics

PeerJ. 2021 9: e10947. PMCID: PMC7977378
Published online 2021 Mar 16. doi: 10.7717/peerj, 10947 PMID: 33777521

Reproducible, portable, and efficient ancient genome reconstruction with nf-
core/eager

James A. Fellows Yates,®'2 Thiseas C. Lamnidis,! Maxime Borry,! Aida Andrades Valtuefia,! Zandra Fagernas,’

Stephen Clayton,! Maxime U. Garcia,®* Judith Neukamm,”® and Alexander Peltzer®!.”

Academic Editor: Alexander Schliep

» Author information » Article notes » Copyright and License information PMC Disclaimer
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ANTIENT DNA

*EAGER to zautomatyzowany potok przetwarzania danych, ktéry ma za zadanie
uprosci¢ analize wielkoskalowych zbioréw danych genomowych.

*EAGER zapewnia funkcje umozliwiajqgce:
° wstepne przetwarzanie, mapowanie i ocene jakosci probek aDNA.

* genotypowania préobek w celu detekcji, filtrowania i analizowania wariantéw
genetycznych.
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HaplotypaCallar

ANGSD

Workflow diagram of the EAGER
pipeline.

The pipeline consists of three distinct
main components for processing and
analysis of NGS data:
"preprocessing

"read mapping

"genotyping
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EAGER OD NF/CORE
NEXTFLOW

Home Pipelines Resources ¥ Docs ® Community ~ About v

nf-core/eager g

A fully reproducible and state-of-the-art ancient DNA analysis pipeline

adna  ancient-dna-analysis  ancientdna genome = metagen

This pipeline uses DSL1. It will not work with Nextflow versions after 22.10.¢ . Learn more.

#® Launch version 2.5.3

This pipeline uses DSL1. It O _https://github.com/nf-core/eager

#® Launch version 2.5.1

©) _https://github.com/nf-core/eager



EAGER OD NF/CORE
NEXTFLOW

The typical command for running the pipeline is as follows:

nextflow run nf-core /eager --input *_R{1,2}.fastq.gz' --fasta 'some.fasta' -profile
standard,docker
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MEDYCYNA GENOMOWA (49:00-1:22:00)

Multi-omics

"Rozne oblicza biologii" - Wydarzenie Specjalne dla uhonorowania prof.
Magdaleny Fikus - 27 FN 2023
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PRECISION ONCOLOGY
naturemedicine

Explore content ¥  About the journal ¥  Publish with us v

nature > nature medicine > analyses > article

Analysis ‘ Open access ‘ Published: 11 January 2024

Insights for precision oncology from the integration of

genomic and clinical data of 13,880 tumors from the
100,000 Genomes Cancer Programme

Alona Sosinsky, John Ambrose, William Cross, Clare Turnbull, Shirley Henderson, Louise Jones, Angela

... Nirupa Murugaesu M+ Show authors
ANALIZA DANYCH NGS 2024/2025 MAGDA MIELCZAREK



CEL

The 100,000 Genomes Project, a UK Government initiative conducted within the
National Health Service (NHS) in England, aimed to establish standardized high-
throughput whole-genome sequencing (WGS) for patients with cancer and rare
diseases via an automated, International Organization for Standardization-
accredited bioinformatics pipeline (providing clinically accredited variant calling and
variant prioritization).

Genomics England, alongside NHS England, analyzed WGS data from 13,880 solid
tumors spanning 33 cancer types, integrating genomic data with real-world treatment
and outcome data, within a secure Research Environment.

A longer-term objective was to accelerate the delivery of molecular testing, including
WGS, in NHS clinical cancer care.
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JOURNEY OF THE PATIENT'S GENOME

Patients provided written informed consent for
WGS analysis.

Patient /~ ~ "\
management | sCaomn?)?g tcgrl.ll(gction
Cenomic tumor DNA was extracted from tumor and normal

advisory board | [0 ) (blood) samples using standardized protocols
o Review 7~ &) oA o and samples were submitted for WGS, which
scientist \ '/ was performed on an lllumina sequencer.

An automated pipeline was constructed for

sequence quality control, alignment, variant

calling and interpretation, with results returned

to the 13 NHS Genomic Medicine Centers for

review.

[ mime! ) Sequencing
\Jliloioiia /

Automated [
interpretation

Variant calling Illumina
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WYNIKI

Incidence of somatic mutations in genes recommended for standard-of-care testing
varied across cancer types

- in glioblastoma multiforme, small variants were present in 94% of cases

- sarcoma demonstrated the highest occurrence of actionable structural variants

(13%).

- Homologous recombination deficiency was identified in 40% of high-grade
serous ovarian cancer cases with 30% linked to pathogenic germline variants,
highlighting the value of combined somatic and germline analysis.

The linkage of WGS and longitudinal life course clinical data allowed the assessment
of treatment outcomes for patients stratified according to pangenomic markers.

*glejok wielopostaciowy, migsak ,rak jajnika
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VARIANT CALLING IN CLINICAL SEQUENCING

Genome Medicine AN

Home About Articles Submission Guidelines Collections Submit manuscript (3

Review | Open access | Published: 26 October 2020

Best practices for variant calling in clinical
sequencing
Daniel C. Koboldt ™

Genome Medicine 12, Article number: 91 (2020) ‘ Cite this article

183k Accesses | 209 Citations ‘ 19 Altmetric ‘ Metrics
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Review | Open access | Published: 26 October 2020

Best practices for variant calling in clinical sequencing

Daniel C. Koboldt &2

Genome Medicine 12, Article number: 91 (2020) | Cite this article

148k Accesses | 134 Citations | 19 Altmetric | Metrics

Abstract

Next-generation sequencing technologies have enabled a dramatic expansion of clinical
genetic testing both for inherited conditions and diseases such as cancer. Accurate variant
calling in NGS data is a critical step upon which virtually all downstream analysis and
interpretation processes rely. Just as NGS technologies have evolved considerably over the
past 10 years, so too have the software tools and approaches for detecting sequence variants in
clinical samples. In this review, I discuss the current best practices for variant calling in
clinical sequencing studies, with a particular emphasis on trio sequencing for inherited
disorders and somatic mutation detection in cancer patients. I describe the relative strengths
and weaknesses of panel, exome, and whole-genome sequencing for variant detection.
Recommended tools and strategies for calling variants of different classes are also provided,
along with guidance on variant review, validation, and benchmarking to ensure optimal
performance. Although NGS technologies are continually evolving, and new capabilities (such
as long-read single-molecule sequencing) are emerging, the “best practice” principles in this

review should be relevant to clinical variant calling in the long term.
ANALIZA DANYCH NGS 2024/2025

Emphasis on frio sequencing
for inherited disorders and
somatic mutation detection in
cancer patients

Strengths and weaknesses of:
- panel

- exome

- whole-genome sequencing
for variant detection.

Recommended tools and
strategies for calling variants
of different classes

The “best practice” principles
in this review should be
relevant to clinical variant

calling in the long term.
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BACKGROUND

NGS technologies enabled ambitious large-scale genomic sequencing efforts that
have transformed our understanding of human health and disease, such The Cancer
Genome Atlas, the Centers for Mendelian Genomics.

They have also been widely adopted for clinical genetic testing:

= Whole-exome sequencing, which selectively targets the protein-coding regions of
known genes, has become a frontline diagnostic tool for inherited disorders

- Targeted panels to interrogate medically relevant subsets of genes have become
core components of precision oncology.
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THE AIM

Presenting “best practices” for variant calling in clinical sequencing for both:
- germline analysis in family trios
- somatic analysis of tumor-normal pairs

This includes recommendations for the choice of:

- sequencing strategy

- NGS read alignment and variant calling preprocessing

- rigorous filtering to remove FP

- guidance on benchmarking NGS analysis pipeline performance using “gold
standard” reference datasets to achieve the optimum balance of sensitivity and

specificity
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SEQUENCING STRATEGIES

The choice of sequencing strategy for a clinical sample has important consequences for variant
calling:

= Gene panels are increasingly cost-effective means of testing for subsets of genes associated
with specific clinical phenotypes.
Numerous gene panels are commercially available, ranging in size from a single gene to hundreds
of genes.

The example: OtoSCOPE hearing loss panel targets 89 genes and microRNAs associated with
hearing loss (1574 total exons); across a cohort of 711 sequenced patients, the average sequence
depth achieved was 716X per patient.

— Exome sequencing, which targets ~ 20,000 protein-coding genes, typically achieves > 100X
average depth across the target regions.

- Whole-genome sequencing offers the most comprehensive approach and typically yields ~ 30—
60X average sequence depth across the entire genome.

Other considerations, such as cost and turnaround time, also influence the choice of sequencing
strategy but are beyond the scope of this review.
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SEQUENCING STRATEGIES

All 3 strategies generally offer excellent
sensitivity for detecting SNVs /indels using
tools such as GATK HaplotypeCaller and
Platypus.

CNVs spanning multiple exons can be
called with reasonable sensitivity using
panel and exome data.

Whole-genome sequencing remains the
superior strategy for the comprehensive
detection of all types of sequence variants.
However, it should be noted that the higher

sequence depth achieved in panel and
exome sequencing may enable more
sensitive detection of variants at low allele
frequencies

ANALIZA DANYCH NGS 2024/2025

Strategy Panel Exome Genome

Size of target space (Mbp) ~05 ~ 50 ~ 3200
Average read depth 500-100x 100-150x ~ 30-60x
Relative cost S §SS
SNV/indel detection ++ ++ 4+

CNV detection + + 14

SV detection +

Low VAF ++ + +

Dollar signs represent approximate relative costs, though it should be noted

that the cost of panel sequencing depends on the size of the panel. The
empirical performance of each strategy for detecting variants of different
classes is indicated as good (+), outstanding (++), or poor/absent (-)

BTW. This
is platypus © 2>



ALIGNMENT & POST-ALN
& SNP CALLING PRE-PROCESSING

Alignment:

—> to a reference genome is a critical phase of NGS analysis. Typically
- BWA-Mem + Samtools

Post-alignment:

—> identify redundant reads that originated from the same DNA sequence molecule (5—
15%) of sequencing reads in a typical exom

—> Picard and Sambamba identify and mark duplicate reads in a BAM file to exclude
them from downstream analysis.



ALIGNMENT & POST-ALN
& SNP CALLING PRE-PROCESSING

SNP-calling pre-processing (form The GATK Best Practices workflow)

— The second is local realignment around indels, which aims to reduce false-
positive variant calls caused by alignment artifacts

- base quality score recalibration (BQSR), which adjusts the base quality scores of
sequencing reads.

Base quality score recalibration (BQSR) is a process in which we apply machine learning to model these errors
empirically and adjust the quality scores accordingly. For example we can identify that, for a given run, whenever
we called two A nucleotides in a row, the next base we called had a 1% higher rate of error. So any base call that
comes after AA in a read should have its quality score reduced by 1%. We do that over several different covariates

(mainly sequence context and position in read, or cycle) in a way that is additive. So the same base may have its

quality score increased for one reason and decreased for another.
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ALIGNMENT & POST-ALN
& SNP CALLING PRE-PROCESSING

SNP-calling pre-processing (form The GATK Best Practices workflow)

— The second is local realignment around indels, which aims to reduce false-
positive variant calls caused by alignment artifacts

- base quality score recalibration (BQSR), which adjusts the base quality scores of
sequencing reads.

suggest that the improvements are marginal; because of this and the high
computational cost, this may be viewed as an optional step for pre-processing.”

—> ,Evaluations of variant calling accuracy before and after BQSR /realignment G
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ALIGNMENT & POST-ALN
& SNP CALLING PRE-PROCESSING

—> Routine quality control (QC) of analysis-ready BAMs should be performed
prior to variant calling to evaluate key sequencing metrics 2 sequencing

coverage

= In the case of family studies and paired samples (e.g., tumor-normal),
expected sample relationships should be confirmed with tools for relationship

inference such as the KING algorithm.

AAAAAAAAAAAAAAA



ALIGNMENT & POST-ALN
& SNP CALLING PRE-PROCESSING

Relationship Inference

KING Tutorial

Visualization of Families
Quality Control
Population Structure
Ancestry Inference
Association Mapping
Risk Prediction

KING Index

Relationship Inference

General Input
-b,--fam,--bim

Kinship Estimation
--kinship

IBD Segment Inference
--ibdseg

Integrated Inference
--related

Other Inferences
--duplicate
--homog
--ibs
--unrelated
--build

KING Tutorial: Relationship Inference

KING is a toolset to explore genotype data from a genome-wide association study (GWAS) or a sequencing project. The latest version is KING 2.3.1 available on July
28, 2023. KING can be used to check family relationship and flag pedigree errors by estimating kinship coefficients and inferring IBD segments for all pairwise
relationships. Unrelated pairs can be precisely separated from close relatives with no false positives, with accuracy up to 3rd- or 4th-degree (depending on array or
WGS) for --related and --ibdseg analyses, and up to 2nd-degree for --kinship analysis.

This tutorial discusses different types of relationship inference such as the kinship coefticient estimates and the IBD segment inference, as well as derived applications
such as pedigree reconstruction and extraction of a subset of unrelated individuals. Other applications of KING such as visualization of families, Quality Control (QC),
the 1dentification of population substructure or gene mapping are described elsewhere.

Family relationship inference in KING 1s very FAST (seconds to identify all close relatives in 10,000s of samples). and robust to a number of realistic scenarios
including the presence of population structure. The number of samples in the dataset can be as small as  (for --kinship inference), or as large as > 10.000.,000 (for --
duplicate and --related inferences). Genome-wide SNPs are required in KING. Please do not prune or iilter any "good" SNPs that pass QC prior to any KING
inference, unless the number of variants is too many to fit the computer memory, e.g., > 100,000,000 as in a WGS study, in which case rare variants can be filtered out.
LD pruning is not recommended in KING.

GENERAL INPUT FILES

The mput files for KING need to be in PLINK binary format, which include a binary genotype file, a family file, and a map file, e.g., ex.bed, ex fam, and ex.bim. A
binary format allows efficient compression of genotype data by using two bits to represent a genotype, which offers substantial computational savings that are essential
to KING analysis. The amount of computer memory required by KING analysis is modest, at ~N X M/ 4 (where N is the number of samples and A/ is the number of

SNPs) plus a small percentage of overhead cost. E.g., for a dataset consisting of 100,000 samples each genotyped at 1,000,000 SNPs, the required memory size 1s
~25GB. Examples of reading in a dataset are:




BENCHMARKING RESOURCES FOR VARIANT
CALLING

Evaluating the accuracy of variant calls requires access to benchmark datasets in
which the true variants are already known.

Each benchmarking dataset includes a set of “ground truth” small variant calls (SNVs
and indels) based on the consensus of several variant calling tools, as well as defining
the “high-confidence” regions of the human genomes in which variant calls can be
benchmarked against a variety of public resources.
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BENCHMARKING RESOURCES FOR VARIANT
CALLING

Several such benchmarking resources have been made publicly available in recent
years. The most widely used ones include:

—> the Genome in a Bottle (GIAB); Dataset has been continually improved with the
addition of data from multiple short-read and linked-read sequencing datasets.

—> the Platinum Genome datasets for NA12878, a human sample of European

ancestry that has been sequenced with various technologies at laboratories around
the world.
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BEST PRACTICES FOR GERMLINE VARIANT
CALLING

Dozens of variant calling tools for NGS data have been published in the past
10 years, and countless more have been developed by researchers for internal use.

Because SNV /indel detection tools such as GATK HaplotypeCaller have
demonstrated high accuracy in numerous benchmark datasets, choosing a single
variant caller that meets the needs of the laboratory (in terms of pipeline
compatibility and ease of implementation) is usually sufficient.

However, combining the results of two orthogonal SNV /indel callers, such as
HaplotypeCaller and Platypus, may offer a slight sensitivity advantage. Software
packages such as BCFtools make it possible to merge multiple variant callsets (in VCF
format) into one.
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BEST PRACTICES FOR GERMLINE VARIANT
CALLING

To discuss the recommended best practices for germline variant calling, we will

consider trio sequencing for inherited disorders, which is a common scenario for
clinical genetic testing.

A trio analysis pipeline typically begins with the analysis-ready BAM files for the
proband and both parents.

For optimal results, all three samples should be sequenced under identical protocols
(capture kit, instrument, and reagent kit) and processed with identical alignment and
pre-processing steps. This is particularly important for copy number variant calling

and SV calling, which rely on uniform sequencing depth and library insert size,
respectively.
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BEST PRACTICES FOR GERMLINE VARIANT
CALLING

Individual versus joint variant calling

All variant calling tools can be applied to individual samples = may be desirable for
laboratories processing large numbers of samples.

Individual VCF files can be merged later using e.g. BCFtoos.

...however, VCF files typically only contain entries for positions that are variant in a
particular sample = when a variant is only detected in some samples but not others,
it is not clear whether the other samples are wild type for that position or simply did
not achieve sufficient coverage for the variant caller to make a call.
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BEST PRACTICES FOR GERMLINE VARIANT
CALLING

Individual versus joint variant calling

Joint variant calling considers all samples simultaneously

Key advantages:

—> it produces called genotypes for every sample at all variant positions. This makes
it possible to differentiate between a position that matches the reference sequence
with high probability and a position in which the sample did not achieve sufficient
coverage.

—> joint calling enables direct inference of phase information (nice for trio)

—> it allows a variant caller to use information from one sample to infer the most
likely genotype in another, which has been shown to increase the sensitivity of variant
calling in low-coverage regions
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BEST PRACTICES FOR GERMLINE VARIANT
CALLING

SNV /indel calling

Multiple tools has been created (Samtools/BCFtools, FreeBayes, GATK
HaplotypeCaller, Platypus etc.)

Numerous studies have compared the performance of these tools on various datasets
—> similar results, variant concordance is typically 80-90% concordance or higher,
with most differences are attributed to variants at low-coverage or low-confidence
positions.

Even so, such differences could amount to thousands of variant calls genome-wide.
Thus, it is important not only to choose a robust variant caller for SNVs/indels, but
also to benchmark to achieve optimal performance on the data to be analyzed.
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BEST PRACTICES FOR GERMLINE VARIANT
CALLING

Filtering to remove artifacts

The accuracy of NGS variant calls relative to the previous “gold standard” of Sanger
sequencing has been well documented at > 99%.

However, NGS data are prone to certain types of artifactual variant calls, many of
which are related to errors in short-read alignment.

—> artifacts should be systematically filtered

-2 visual review of the alignments for clinically relevant variants is recommended to
identify false-positive variant calls that slip past automated filters.
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Common artifacts in NGS alignments that gave rise to a false-positive de novo mutation call in a family trio
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Common artifacts in NGS alignments that gave rise to a false-positive de novo mutation call in a family trio
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Common artifacts in NGS alignments that gave rise to a false-positive de novo mutation call in a family trio
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Common artifacts in NGS alignments that gave rise to a false-positive de novo mutation call in a family trio
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VALIDATION OF NGS VARIANTS

Whether or not Sanger confirmation should be required for clinically relevant
variants remains a matter of debate.

The validation rate for NGS variant calls is extremely high (99.96%) suggesting that
for the vast majority of NGS variants, independent confirmation is unnecessarily
redundant.

In many cases, a visual manual review of the variant may be enough to determine if
it passes muster or warrants validation.

= An interlaboratory study of more than 80,000 clinical specimens demonstrated
that an approach examining fewer than ten criteria (read depth, quality score,
observed variant allele sequence, repetitive sequence, etc.) can identify the subset of
variants most likely to be false positives and thus requiring orthogonal validation.
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A. Alignment and pre-processing of NGS data for an individual sample.

B. Variant calling in NGS trio sequencing. In this common study design, variants are called jointly (simultaneously) in a
proband and both parents, which enables the phasing of variants by parent of origin. The initial variant calls are
typically filtered to remove a number of recurrent artifacts associated with short-read alignment and maybe visually
confirmed by manual review of the sequence alignments. Orthogonal validation may be performed to confirm the variant
and its segregation within the family. De novo alterations should be aggressively filtered to remove both artefactual calls
in the proband (false positives) and inherited variants that were under-called in a parent (false negatives). In addition to
manual inspection of alignments, most de novo mutations are independently verified by orthogonal validation techniques,
such as Sanger sequencing.

Raw Sequence Data
(FASTQ files)

l I—vb—l

Reference Genome N Align Reads to Joint Variant Somatic Variant
Assembly (FASTA) Reference Calling Calling

! s ! !
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IDENTIFYING 2 NOVO MUTATIONS

A key advantage of joint calling in trios is the ability to distinguish de novo mutations,
which account for a significant proportion of positive diagnoses from clinical genetic
testing.

According to recent large-scale trio sequencing studies, the human de novo mutation
rate is approximately 1.29 X 1078 per base pair per generation.

—> each proband likely harbors ~ 70 de novo mutations genome-wide against a
background of ~ 4—5 miillion inherited variants.

In the protein-coding exome, we expect ~ 1 de novo mutation on a background of
~ 50,000 inherited variants. A sequence variant called in the proband is therefore
far more likely to be inherited than de novo.
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IDENTIFYING 2 NOVO MUTATIONS

—> even with extremely high variant calling precision (99.9%), there will be 50 false-
positive calls for each de novo mutation. Thus, candidate de novo mutations merit
careful scrutiny.

to filtering for artifactual calls de novo mutations:

—~should be queried against public databases. Although true de novo mutations can
certainly occur at positions of known sequence variants, a candidate de novo with
high frequency in the population (i.e., MAF > 0.0001) is far more likely to represent a
germline variant.

—>manual review in IGY should be used to exclude both artifactual calls and variants
with supporting evidence in one or both parents.
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CNVAND SV CALLING

Copy number variants (CNVs) are a major source of human genetic variation and
have been implicated in numerous diseases (e.g. autism, intellectual disability,
congenital heart disease).

NGS-based CNV detection is increasingly incorporated into clinical diagnostic testing
and accounts for 3—5% of positive diagnoses.

- identifying CNVs from targeted NGS data, such as cn.MOPS, CONTRA,
CoNVEX, ExomeCNV, ExomeDepth, and XHMM. Most rely on comparisons of

sequence depth between a test subject and a comparator to identify significant
changes in copy number.

Not all CNV calling tools perform well in all situations, and as a rule, the sensitivity
for CNV detection using targeted NGS is limited
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CNVAND SV CALLING

Paired-end whole-genome sequencing data also enables the detection of structural
variants with increasing precision. Popular tools for this application, such as DELLY,

Lumpy, Manta, Pindel, and SVMerge, use two types of information to identify
signatures of structural variants.

— Read pairing information serves to identify segments of the genome in which
molecularly linked read pairs map at unexpected distances or orientations.

—> Split read alignments, in which a single sequence read maps to two different
regions of the genome, are also incorporated into SV calling.
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CNVAND SV CALLING

SV detection with whole-genome sequencing data is still challenging 2
~ 0.80-0.90 in benchmarking experiments.

Possible reasons:

— a large proportion of structural variation occurs in “difficult” regions of the
genome, such as repetitive or tandem-duplicated sequences.

—> the relatively short length of NGS reads (~ 150 bp) and typical fragments

(~ 300-500 bp) is often insufficient to resolve complex structural variants and long
insertions.
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Visual review of copy number and structural variants
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Visual review of copy number and structural variants
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Visual review of copy number and structural variants
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Visual review of copy number and structural variants
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BEST PRACTICES FOR SOMATIC MUTATION
CALLING

Although ~ 10% of cancer patients harbor germline predisposition variants, the main
purpose of clinical tumor sequencing is often the identification of somatic mutations,
copy number alterations, and fusions that may have clinical relevance.

A standard pipeline for this is shown in Fig. Tc. It illustrates a paired tumor-normal
sequencing strategy, that is, sequencing DNA from a tumor sample and a matched
control sample (e.g., blood or skin) from the same patient.

Although tumor-only sequencing has been adopted by many laboratories as a cost-
effective approach to guide cancer diagnosis, prognosis, and therapy, doing so
makes it difficult to distinguish true somatic mutations from constitutional variants. Thus,
the emphasis of this section will be on the “best practice” of sequencing a tumor
sample with a matched comparator sample.
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C. Somatic variant calling in matched tumor-normal pairs. Identification of somatic alterations in tumors requires
specialized variant callers which consider aligned data from the tumor and normal simultaneously. Candidate somatic
variants are filtered and visually reviewed to remove common alignment artifacts as well as germline variants under-
called in the normal sample. The resulting variants are typically validated by orthogonaal approaches, which may require
specialized approaches for low-frequency variant.
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BEST PRACTICES FOR SOMATIC MUTATION
CALLING

Widely used somatic mutation callers, such as MuTect2, Strelka2, and VarScan?2
consider aligned data from the tumor and normal simultaneously.

Eeach has strengths and weaknesses = two or more complementary callers may
offer the best balance of sensitivity and specificity.



BEST PRACTICES FOR SOMATIC MUTATION
CALLING

Detection of somatic mutations is challenging.

—> Tumor purity - the proportion of cells in a sample that are cancerous - governs
the representation of somatic mutations in a sequenced sample, but pathology
estimates of purity based on light microscopy may be inaccurate.

-~ Formalin-fixed, paraffin-embedded (FFPE) samples, which are preferred for

histopathological diagnosis, often harbor thousands of artifacts arising from chemical
DNA damage.

ANALIZA DANYCH NGS 2024/2025 MAGDA MIELCZAREK



BEST PRACTICES FOR SOMATIC MUTATION
CALLING

Filtering with population databases
High-confidence somatic SNV /indel calls should be:

- identified by multiple somatic mutation calling tools at positions with sufficient
sequencing coverage (> 10X in both tumor and normal tissue).

—> supported by reads on both strands with no apparent bias in base quality, or
mapping quality.

—> absent from public databases and an internal laboratory panel of normal (if
available), or else present at very low frequencies (MAF < 0.001).

- reviewed by visualization of the tumor and normal sequencing alignments with a
tool such as IGV.

ANALIZA DANYCH NGS 2024/2025 MAGDA MIELCZAREK



BENCHMARKING SOMATIC CALLING PIPELINES

Benchmarking somatic mutation callers requires a reference “truth set” of real somatic
mutations.

Numerous comparisons of somatic mutation callers have been published but the findings are
inconsistent. One reason for this is that the researchers conducting those studies often apply
variant callers with default parameter settings or neglect to perform critical downstream
filtering.

To address this issue, the DREAM ICGC-TCGA Somatic Mutation calling challenge invited
teams, including several developers of somatic mutation calling tools, to benchmark their
pipelines on a common dataset. The organizers employed a robust simulation framework to
introduce synthetic somatic alterations (i.e., a truth set) into real WGS data for three tumors
upon which each team’s submissions were evaluated. The simulated datasets and truth sets
from these challenges are freely available and offer a well-vetted benchmarking resource for
somatic SNV, indel, and structural variant calling pipelines.
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Table 2 Key components of NGS analysis and a list of exemplar tools. Most clinical sequencing pipelines will employ a single read
aligner (e.g., BWA-MEM) and mark duplicates with one algorithm (e.g., Picard). However, multiple tools for collecting sequencing
metrics and performing sample QC may be employed to meet the needs of the laboratory. For variant calling, it is recommended
that pipelines incorporate 2-3 tools for each class of variant to maximize detection sensitivity. See the relevant section of this review
for recommendations specific to each variant class

Strategy Variant callers

Alignment and pre-processing
Read alignment BWA-MEM [25], Bowtie 2 [26], minimap2 [27], Novoalign
Marking duplicates Picard tools [28], Sambamba [29], SAMBLASTER [30]
BAM file creation Samtools [31], GATK [19]
Seguencing metrics BEDTools [32], Picard tools [28], QualiMap 2 [33]
Sample quality contro KING [34], VerifyBamID [35]
Variant calling
nherited SNVs/indels FreeBayes [36], GATK HaplotypeCaller [19], Platypus [20], Samtools/BCFtools [37]
Somatic mutations deepSNV [38], MuSE [39], MuTect2 [40], SomaticSniper [41], Strelka2 [42], VarDict [43], VarScan2 [44]
Copy number variants cn.MOPS [45], CONTRA [46], CoNVEX [47], ExomeCNV [48], ExomeDepth [49], XHMM [50]
Structural variants DELLY [51], Lumpy [52], Manta [53], Pindel [54], SVMerge [55]
Gene fusions (RNA-seq) fusionCatcher [56)], fusionMap [57], mapSplice [58], SOAPfuse [59], STAR-Fusion [60], TopHat-Fusion [61]
Variant review/storage
Visualization and review Artemis [62], Integrative Genomics Viewer [63]

VCF/BCF file manipulation BCFtools [37]

BAM binary alignment/map, SNV single nucleotide variant, VCF variant call format, BCF binary variant call format




CONCLUSIONS AND FUTURE DIRECTIONS

Variant calling in NGS data, much like NGS technologies themselves, has evolved
considerably over the past decade and remains an active area of research.

Robust pipelines for NGS analysis include steps for:
- optimized alignment and pre-processing

- variant calling, filtering of false positive

- visual manual review.

While some of these procedures, such as read alignment and SNV /indel detection,

can be suitably performed with a single software package, others, such as CNV /SV
calling and somatic mutation detection, benefit from incorporating multiple
independent tools.

Benchmarking resources for both germline and somatic variants provide an
opportunity to evaluate and optimize the performance of variant calling.
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CONCLUSIONS AND FUTURE DIRECTIONS

Although some classes of variants—such as de novo mutations in germline studies and
low-frequency somatic mutations in cancer patients—likely require validation on an
orthogonal platform, the burden of additional confirmatory testing is likely to
decrease as technologies continue to improve.

Long-read sequencing technologies may ultimately be required to accurately call
large and /or complex structural variants.
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